Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 8 |
Descriptor
Error Patterns | 8 |
Item Response Theory | 5 |
Accuracy | 4 |
Test Items | 4 |
Computer Assisted Testing | 3 |
Models | 3 |
Computation | 2 |
Maximum Likelihood Statistics | 2 |
Simulation | 2 |
Adaptive Testing | 1 |
Artificial Intelligence | 1 |
More ▼ |
Source
Journal of Educational… | 8 |
Author
Amanda Goodwin | 2 |
Matthew Naveiras | 2 |
Sun-Joo Cho | 2 |
Alex J. Mechaber | 1 |
Brian E. Clauser | 1 |
Choe, Edison M. | 1 |
Han, Suhwa | 1 |
Joo, Seang-Hwane | 1 |
Jorge Salas | 1 |
Kai North | 1 |
Kang, Hyeon-Ah | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 5 |
Reports - Evaluative | 3 |
Education Level
Elementary Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peter Baldwin; Victoria Yaneva; Kai North; Le An Ha; Yiyun Zhou; Alex J. Mechaber; Brian E. Clauser – Journal of Educational Measurement, 2025
Recent developments in the use of large-language models have led to substantial improvements in the accuracy of content-based automated scoring of free-text responses. The reported accuracy levels suggest that automated systems could have widespread applicability in assessment. However, before they are used in operational testing, other aspects of…
Descriptors: Artificial Intelligence, Scoring, Computational Linguistics, Accuracy
Li, Dongmei – Journal of Educational Measurement, 2022
Equating error is usually small relative to the magnitude of measurement error, but it could be one of the major sources of error contributing to mean scores of large groups in educational measurement, such as the year-to-year state mean score fluctuations. Though testing programs may routinely calculate the standard error of equating (SEE), the…
Descriptors: Error Patterns, Educational Testing, Group Testing, Statistical Analysis
Han, Suhwa; Kang, Hyeon-Ah – Journal of Educational Measurement, 2023
The study presents multivariate sequential monitoring procedures for examining test-taking behaviors online. The procedures monitor examinee's responses and response times and signal aberrancy as soon as significant change is identifieddetected in the test-taking behavior. The study in particular proposes three schemes to track different…
Descriptors: Test Wiseness, Student Behavior, Item Response Theory, Computer Assisted Testing
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Lim, Hwanggyu; Choe, Edison M. – Journal of Educational Measurement, 2023
The residual differential item functioning (RDIF) detection framework was developed recently under a linear testing context. To explore the potential application of this framework to computerized adaptive testing (CAT), the present study investigated the utility of the RDIF[subscript R] statistic both as an index for detecting uniform DIF of…
Descriptors: Test Items, Computer Assisted Testing, Item Response Theory, Adaptive Testing
Kim, Hyung Jin; Lee, Won-Chan – Journal of Educational Measurement, 2022
Orlando and Thissen (2000) introduced the "S - X[superscript 2]" item-fit index for testing goodness-of-fit with dichotomous item response theory (IRT) models. This study considers and evaluates an alternative approach for computing "S - X[superscript 2]" values and other factors associated with collapsing tables of observed…
Descriptors: Goodness of Fit, Test Items, Item Response Theory, Computation
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Paul De Boeck – Journal of Educational Measurement, 2024
Explanatory item response models (EIRMs) have been applied to investigate the effects of person covariates, item covariates, and their interactions in the fields of reading education and psycholinguistics. In practice, it is often assumed that the relationships between the covariates and the logit transformation of item response probability are…
Descriptors: Item Response Theory, Test Items, Models, Maximum Likelihood Statistics
Sun-Joo Cho; Amanda Goodwin; Matthew Naveiras; Jorge Salas – Journal of Educational Measurement, 2024
Despite the growing interest in incorporating response time data into item response models, there has been a lack of research investigating how the effect of speed on the probability of a correct response varies across different groups (e.g., experimental conditions) for various items (i.e., differential response time item analysis). Furthermore,…
Descriptors: Item Response Theory, Reaction Time, Models, Accuracy