NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yannick Rothacher; Carolin Strobl – Journal of Educational and Behavioral Statistics, 2024
Random forests are a nonparametric machine learning method, which is currently gaining popularity in the behavioral sciences. Despite random forests' potential advantages over more conventional statistical methods, a remaining question is how reliably informative predictor variables can be identified by means of random forests. The present study…
Descriptors: Predictor Variables, Selection Criteria, Behavioral Sciences, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics