NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2025
Consider the conventional multilevel model Y=C[gamma]+Zu+e where [gamma] represents fixed effects and (u,e) are multivariate normal random effects. The continuous outcomes Y and covariates C are fully observed with a subset Z of C. The parameters are [theta]=([gamma],var(u),var(e)). Dempster, Rubin and Tsutakawa (1981) framed the estimation as a…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Sampling, Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Ting; Konstantopoulos, Spyros – Practical Assessment, Research & Evaluation, 2022
Large-scale assessment survey (LSAS) data are collected via complex sampling designs with special features (e.g., clustering and unequal probability of selection). Multilevel models have been utilized to account for clustering effects whereas the probability weighting approach (PWA) has been used to deal with design informativeness derived from…
Descriptors: Sampling, Weighted Scores, Hierarchical Linear Modeling, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Daniel Y.; Harring, Jeffrey R.; Stapleton, Laura M. – Journal of Experimental Education, 2019
Respondent attrition is a common problem in national longitudinal panel surveys. To make full use of the data, weights are provided to account for attrition. Weight adjustments are based on sampling design information and data from the base year; information from subsequent waves is typically not utilized. Alternative methods to address bias from…
Descriptors: Longitudinal Studies, Research Methodology, Research Problems, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Wendy; Deary, Ian J.; Bouchard, Thomas J., Jr. – Educational and Psychological Measurement, 2018
Most study samples show less variability in key variables than do their source populations due most often to indirect selection into study participation associated with a wide range of personal and circumstantial characteristics. Formulas exist to correct the distortions of population-level correlations created. Formula accuracy has been tested…
Descriptors: Correlation, Sampling, Statistical Distributions, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Suero, Manuel; Privado, Jesús; Botella, Juan – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
A simulation study is presented to evaluate and compare three methods to estimate the variance of the estimates of the parameters d and "C" of the signal detection theory (SDT). Several methods have been proposed to calculate the variance of their estimators, "d'" and "c." Those methods have been mostly assessed by…
Descriptors: Evaluation Methods, Theories, Simulation, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Joyce, Ted; Remler, Dahlia K.; Jaeger, David A.; Altindag, Onur; O'Connell, Stephen D.; Crockett, Sean – Journal of Policy Analysis and Management, 2017
Randomized experiments provide unbiased estimates of treatment effects, but are costly and time consuming. We demonstrate how a randomized experiment can be leveraged to measure selection bias by conducting a subsequent observational study that is identical in every way except that subjects choose their treatment--a quasi-doubly randomized…
Descriptors: Randomized Controlled Trials, Quasiexperimental Design, Selection Criteria, Selection Tools