NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20254
Since 2022 (last 5 years)20
Since 2017 (last 10 years)37
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 37 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Miriam Madsen – Discourse: Studies in the Cultural Politics of Education, 2025
While previous educational governance literature on datafication has paid attention to comparison across spatial entities like countries and schools, temporal comparison in terms of progression (including prediction) has received less attention. One of the material forms in which progression and prediction data are circulated is the visual form of…
Descriptors: Graphs, Prediction, Higher Education, Charts
Peer reviewed Peer reviewed
Direct linkDirect link
Zhenchang Xia; Nan Dong; Jia Wu; Chuanguo Ma – IEEE Transactions on Learning Technologies, 2024
As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide…
Descriptors: Graphs, Artificial Intelligence, Multivariate Analysis, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Wanxue Qi – Technology, Pedagogy and Education, 2025
One challenging issue in improving the teaching and learning methods in MOOCs is to construct potential knowledge graphs from massive learning resources. Therefore, this study proposes knowledge graphs driving online learning behaviour prediction and multi-learning task recommendation in MOOCs. Based on the knowledge graphs supported by…
Descriptors: Graphs, Knowledge Level, MOOCs, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona; Qi, Wanxue – Education and Information Technologies, 2023
MOOCs might be an important organization way to realize the online learning process. Online technology and sharing technology enable MOOCs to realize the adaptive scheduling of learning resources, as well as the independent construction of learning sequences. At the same time, it also generates a large number of complex learning behaviors. How to…
Descriptors: MOOCs, Learning Processes, Learning Analytics, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Liqing Qiu; Lulu Wang – IEEE Transactions on Education, 2025
In recent years, knowledge tracing (KT) within intelligent tutoring systems (ITSs) has seen rapid development. KT aims to assess a student's knowledge state based on past performance and predict the correctness of the next question. Traditional KT often treats questions with different difficulty levels of the same concept as identical…
Descriptors: Intelligent Tutoring Systems, Technology Uses in Education, Questioning Techniques, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Ping Hu; Zhaofeng Li; Pei Zhang; Jimei Gao; Liwei Zhang – International Journal of Web-Based Learning and Teaching Technologies, 2024
Given the extensive use of online learning in educational settings, Knowledge Tracing (KT) is becoming increasingly essential. KT primarily aims to predict a student's future knowledge acquisition based on their past learning activities, thus enhancing the efficiency of student learning. However, the effective acquisition of dynamic and evolving…
Descriptors: Knowledge Level, Graphs, Trend Analysis, Time Factors (Learning)
Peer reviewed Peer reviewed
Direct linkDirect link
Khoushehgir, Fatemeh; Sulaimany, Sadegh – Education and Information Technologies, 2023
In recent years, the rapid growth of Massive Open Online Courses (MOOCs) has attracted much attention for related research. Besides, one of the main challenges in MOOCs is the high dropout or low completion rate. Early dropout prediction algorithms aim the educational institutes to retain the students for the related course. There are several…
Descriptors: Prediction, Dropout Prevention, MOOCs, Dropout Rate
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Anca Muresan; Mihaela Cardei; Ionut Cardei – International Educational Data Mining Society, 2025
Early identification of student success is crucial for enabling timely interventions, reducing dropout rates, and promoting on-time graduation. In educational settings, AI-powered systems have become essential for predicting student performance due to their advanced analytical capabilities. However, effectively leveraging diverse student data to…
Descriptors: Artificial Intelligence, At Risk Students, Learning Analytics, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Hongye; Wang, Chong; Duan, Qinglong; Lu, Yu; Zhang, Hu; Li, Ru – Interactive Learning Environments, 2023
Automatic short answer grading (ASAG) is a challenging task that aims to predict a score for a given student response. Previous works on ASAG mainly use nonneural or neural methods. However, the former depends on handcrafted features and is limited by its inflexibility and high cost, and the latter ignores global word cooccurrence in a corpus and…
Descriptors: Automation, Grading, Computer Assisted Testing, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Albreiki, Balqis; Habuza, Tetiana; Zaki, Nazar – International Journal of Educational Technology in Higher Education, 2023
Technological advances have significantly affected education, leading to the creation of online learning platforms such as virtual learning environments and massive open online courses. While these platforms offer a variety of features, none of them incorporates a module that accurately predicts students' academic performance and commitment.…
Descriptors: Identification, At Risk Students, Artificial Intelligence, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Cantoral, Ricardo; Espinoza, Lianggi; Gaete-Peralta, Claudio – ZDM: Mathematics Education, 2023
The research on which we report in this paper was framed within the socioepistemological theory and dealt with the fundamental role of variational practices in the understanding of COVID-19 pandemic graphs. Given the proliferation of mathematical graphs related to the pandemic in the media, we proposed to analyse the variational practices in use…
Descriptors: COVID-19, Pandemics, Graphs, News Media
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lathifaturrahmah Lathifaturahmah; Toto Nusantara; Subanji Subanji; Makbul Muksar – Mathematics Teaching Research Journal, 2024
The capacity to generate prediction is indispensable in daily existence, particularly amidst the swift transformations that are occurring on a global scale. Therefore, this study aimed to analyze the levels of prediction ability among mathematics students when presented with data in graphs. A qualitative approach was adopted, involving 37…
Descriptors: Mathematics Instruction, Mathematics Skills, Prediction, COVID-19
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Wanxue Qi – Education and Information Technologies, 2024
The full implementation of MOOCs in online education offers new opportunities for integrating multidisciplinary and comprehensive STEM education. It facilitates the alignment between online learning content and learning behaviors. However, it also presents new challenges, such as a high rate of STEM dropouts. Many learners struggle to establish…
Descriptors: Graphs, MOOCs, STEM Education, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Nakagawa, Shinichi; Lagisz, Malgorzata; O'Dea, Rose E.; Rutkowska, Joanna; Yang, Yefeng; Noble, Daniel W. A.; Senior, Alistair M. – Research Synthesis Methods, 2021
"Classic" forest plots show the effect sizes from individual studies and the aggregate effect from a meta-analysis. However, in ecology and evolution, meta-analyses routinely contain over 100 effect sizes, making the classic forest plot of limited use. We surveyed 102 meta-analyses in ecology and evolution, finding that only 11% use the…
Descriptors: Graphs, Meta Analysis, Ecology, Evolution
Peer reviewed Peer reviewed
Direct linkDirect link
Balqis Albreiki; Tetiana Habuza; Nishi Palakkal; Nazar Zaki – Education and Information Technologies, 2024
The nature of education has been transformed by technological advances and online learning platforms, providing educational institutions with more options than ever to thrive in a complex and competitive environment. However, they still face challenges such as academic underachievement, graduation delays, and student dropouts. Fortunately, by…
Descriptors: Multivariate Analysis, Graphs, Identification, At Risk Students
Previous Page | Next Page »
Pages: 1  |  2  |  3