NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)5
Since 2017 (last 10 years)15
Audience
Location
China1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sooyong Lee; Suhwa Han; Seung W. Choi – Journal of Educational Measurement, 2024
Research has shown that multiple-indicator multiple-cause (MIMIC) models can result in inflated Type I error rates in detecting differential item functioning (DIF) when the assumption of equal latent variance is violated. This study explains how the violation of the equal variance assumption adversely impacts the detection of nonuniform DIF and…
Descriptors: Factor Analysis, Bayesian Statistics, Test Bias, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Gibson, C. Ben; Sutton, Jeannette; Vos, Sarah K.; Butts, Carter T. – Sociological Methods & Research, 2023
Microblogging sites have become important data sources for studying network dynamics and information transmission. Both areas of study, however, require accurate counts of indegree, or follower counts; unfortunately, collection of complete time series on follower counts can be limited by application programming interface constraints, system…
Descriptors: Social Networks, Network Analysis, Social Media, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Yamaguchi, Kazuhiro; Okada, Kensuke – Journal of Educational and Behavioral Statistics, 2020
In this article, we propose a variational Bayes (VB) inference method for the deterministic input noisy AND gate model of cognitive diagnostic assessment. The proposed method, which applies the iterative algorithm for optimization, is derived based on the optimal variational posteriors of the model parameters. The proposed VB inference enables…
Descriptors: Bayesian Statistics, Statistical Inference, Cognitive Measurement, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Muharrem; Karal, Hasan; Nabiyev, Vasif – Education and Information Technologies, 2023
This study aims to examine adaptability for educational games in terms of adaptation elements, components used in creating user profiles, and decision algorithms used for adaptation. For this purpose, articles and full-text papers in Web of Science, Google Scholar, and Eric databases between 2000-2021 were searched using the keywords…
Descriptors: Educational Games, Game Based Learning, Programming, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Fu, Qiang; Guo, Xin; Land, Kenneth C. – Sociological Methods & Research, 2020
Count responses with grouping and right censoring have long been used in surveys to study a variety of behaviors, status, and attitudes. Yet grouping or right-censoring decisions of count responses still rely on arbitrary choices made by researchers. We develop a new method for evaluating grouping and right-censoring decisions of count responses…
Descriptors: Surveys, Artificial Intelligence, Evaluation Methods, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lazrig, Ibrahim; Humpherys, Sean L. – Information Systems Education Journal, 2022
Can sentiment analysis be used in an educational context to help teachers and researchers evaluate students' learning experiences? Are sentiment analyzing algorithms accurate enough to replace multiple human raters in educational research? A dataset of 333 students evaluating a learning experience was acquired with positive, negative, and neutral…
Descriptors: College Students, Learning Analytics, Educational Research, Learning Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Abdelhafez, Hoda Ahmed; Elmannai, Hela – International Journal of Information and Communication Technology Education, 2022
Learning data analytics improves the learning field in higher education using educational data for extracting useful patterns and making better decisions. Identifying potential at-risk students may help instructors and academic guidance to improve the students' performance and the achievement of learning outcomes. The aim of this research study is…
Descriptors: Learning Analytics, Mathematics, Prediction, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Ko, Chia-Yin; Leu, Fang-Yie – IEEE Transactions on Education, 2021
Contribution: This study applies supervised and unsupervised machine learning (ML) techniques to discover which significant attributes that a successful learner often demonstrated in a computer course. Background: Students often experienced difficulties in learning an introduction to computers course. This research attempts to investigate how…
Descriptors: Undergraduate Students, Student Characteristics, Academic Achievement, Predictor Variables
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karabatsos, George – Grantee Submission, 2017
This article introduces a Bayesian method for testing the axioms of additive conjoint measurement. The method is based on an importance sampling algorithm that performs likelihood-free, approximate Bayesian inference using a synthetic likelihood to overcome the analytical intractability of this testing problem. This new method improves upon…
Descriptors: Bayesian Statistics, Measurement, Statistical Analysis, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gardner, Josh; Brooks, Christopher – Journal of Learning Analytics, 2018
Model evaluation -- the process of making inferences about the performance of predictive models -- is a critical component of predictive modelling research in learning analytics. We survey the state of the practice with respect to model evaluation in learning analytics, which overwhelmingly uses only naïve methods for model evaluation or…
Descriptors: Prediction, Models, Evaluation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus – IEEE Transactions on Learning Technologies, 2017
Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…
Descriptors: Bayesian Statistics, Models, Intelligent Tutoring Systems, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Mandel, Travis Scott – ProQuest LLC, 2017
When a new student comes to play an educational game, how can we determine what content to give them such that they learn as much as possible? When a frustrated customer calls in to a helpline, how can we determine what to say to best assist them? When an ill patient comes in to the clinic, how do we determine what tests to run and treatments to…
Descriptors: Reinforcement, Learning Processes, Student Evaluation, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use