Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 11 |
Descriptor
Author
| Zhang, Zhiyong | 11 |
| Cain, Meghan K. | 3 |
| Liu, Haiyan | 3 |
| Tong, Xin | 2 |
| Bergeman, C. S. | 1 |
| Bergeman, C.S. | 1 |
| Jin, Ick Hoon | 1 |
| Mai, Yujiao | 1 |
| Wen, Zhonglin | 1 |
| Yuan, Ke-Hai | 1 |
| Zhang, Danyang | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 10 |
| Journal Articles | 3 |
| Reports - Descriptive | 1 |
Education Level
| Higher Education | 2 |
| Postsecondary Education | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| National Longitudinal Survey… | 2 |
| Peabody Individual… | 1 |
What Works Clearinghouse Rating
Liu, Haiyan; Jin, Ick Hoon; Zhang, Zhiyong – Grantee Submission, 2018
Psychologists are interested in whether friends and couples share similar personalities or not. However, no statistical models are readily available to test the association between personalities and social relations in the literature. In this study, we develop a statistical model for analyzing social network data with the latent personality traits…
Descriptors: Structural Equation Models, Social Networks, Personality Traits, Statistical Analysis
Zhang, Zhiyong; Liu, Haiyan – Grantee Submission, 2018
Latent change score models (LCSMs) proposed by McArdle (McArdle, 2000, 2009; McArdle & Nesselroade, 1994) offer a powerful tool for longitudinal data analysis. They are becoming increasingly popular in social and behavioral research (e.g., Gerstorf et al., 2007; Ghisletta & Lindenberger, 2005; King et al., 2006; Raz et al., 2008). Although…
Descriptors: Sample Size, Monte Carlo Methods, Data Analysis, Models
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Cain, Meghan K.; Zhang, Zhiyong – Grantee Submission, 2018
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain under-utilized. This is largely due to the lack of…
Descriptors: Bayesian Statistics, Structural Equation Models, Monte Carlo Methods, Sample Size
Mai, Yujiao; Zhang, Zhiyong; Wen, Zhonglin – Grantee Submission, 2018
Exploratory structural equation modeling (ESEM) is an approach for analysis of latent variables using exploratory factor analysis to evaluate the measurement model. This study compared ESEM with two dominant approaches for multiple regression with latent variables, structural equation modeling (SEM) and manifest regression analysis (MRA). Main…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Comparative Analysis, Statistical Bias
Cain, Meghan K.; Zhang, Zhiyong; Bergeman, C. S. – Educational and Psychological Measurement, 2018
This article serves as a practical guide to mediation design and analysis by evaluating the ability of mediation models to detect a significant mediation effect using limited data. The cross-sectional mediation model, which has been shown to be biased when the mediation is happening over time, is compared with longitudinal mediation models:…
Descriptors: Mediation Theory, Case Studies, Longitudinal Studies, Measurement Techniques
Cain, Meghan K.; Zhang, Zhiyong; Bergeman, C.S. – Grantee Submission, 2018
This paper serves as a practical guide to mediation design and analysis by evaluating the ability of mediation models to detect a significant mediation effect using limited data. The cross-sectional mediation model, which has been shown to be biased when the mediation is happening over time, is compared to longitudinal mediation models:…
Descriptors: Mediation Theory, Case Studies, Longitudinal Studies, Measurement Techniques
Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2017
Misclassification means the observed category is different from the underlying one and it is a form of measurement error in categorical data. The measurement error in continuous, especially normally distributed, data is well known and studied in the literature. But the misclassification in a binary outcome variable has not yet drawn much attention…
Descriptors: Classification, Regression (Statistics), Statistical Bias, Models
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2017
Growth curve models are widely used for investigating growth and change phenomena. Many studies in social and behavioral sciences have demonstrated that data without any outlying observation are rather an exception, especially for data collected longitudinally. Ignoring the existence of outlying observations may lead to inaccurate or even…
Descriptors: Observation, Models, Statistical Distributions, Monte Carlo Methods
Zhang, Zhiyong; Zhang, Danyang – Grantee Submission, 2021
Data science has maintained its popularity for about 20 years. This study adopts a bottom-up approach to understand what data science is by analyzing the descriptions of courses offered by the data science programs in the United States. Through topic modeling, 14 topics are identified from the current curricula of 56 data science programs. These…
Descriptors: Statistics Education, Definitions, Course Descriptions, Computer Science Education
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability

Peer reviewed
Direct link
