NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Goutte, Cyril; Durand, Guillaume – International Educational Data Mining Society, 2020
Learning curves are an important tool in cognitive diagnostics modeling to help assess how well students acquire new skills, and to refine and improve knowledge component models. Learning curves are typically obtained from a model estimated on real data obtained from a finite, and usually limited, sample of students. As a consequence, there is…
Descriptors: Learning, Models, Computation, Statistical Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Malik, Ali; Wu, Mike; Vasavada, Vrinda; Song, Jinpeng; Coots, Madison; Mitchell, John; Goodman, Noah; Piech, Chris – International Educational Data Mining Society, 2021
Access to high-quality education at scale is limited by the difficulty of providing student feedback on open-ended assignments in structured domains like programming, graphics, and short response questions. This problem has proven to be exceptionally difficult: for humans, it requires large amounts of manual work, and for computers, until…
Descriptors: Grading, Accuracy, Computer Assisted Testing, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moore, Russell; Caines, Andrew; Elliott, Mark; Zaidi, Ahmed; Rice, Andrew; Buttery, Paula – International Educational Data Mining Society, 2019
Educational systems use models of student skill to inform decision-making processes. Defining such models manually is challenging due to the large number of relevant factors. We propose learning multidimensional representations (embeddings) from student activity data -- these are fixed-length real vectors with three desirable characteristics:…
Descriptors: Models, Knowledge Representation, Skills, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Chang; Cutumisu, Maria – International Educational Data Mining Society, 2021
Digitalization and automation of test administration, score reporting, and feedback provision have the potential to benefit large-scale and formative assessments. Many studies on automated essay scoring (AES) and feedback generation systems were published in the last decade, but few connected AES and feedback generation within a unified framework.…
Descriptors: Learning Processes, Automation, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rachatasumrit, Napol; Koedinger, Kenneth R. – International Educational Data Mining Society, 2021
Student modeling is useful in educational research and technology development due to a capability to estimate latent student attributes. Widely used approaches, such as the Additive Factors Model (AFM), have shown satisfactory results, but they can only handle binary outcomes, which may yield potential information loss. In this work, we propose a…
Descriptors: Models, Student Characteristics, Feedback (Response), Error Correction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Weitekamp, Daniel, III.; Harpstead, Erik; MacLellan, Christopher J.; Rachatasumrit, Napol; Koedinger, Kenneth R. – International Educational Data Mining Society, 2019
Computational models of learning can be powerful tools to test educational technologies, automate the authoring of instructional software, and advance theories of learning. These mechanistic models of learning, which instantiate computational theories of the learning process, are capable of making predictions about learners' performance in…
Descriptors: Computation, Models, Learning, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ou, Lu; Hofman, Abe D.; Simmering, Vanessa R.; Bechger, Timo; Maris, Gunter; van der Maas, Han L. J. – International Educational Data Mining Society, 2019
In this study, we fitted a mixed-effects nonlinear continuous-time mutualism model of skill development proposed by van der Maas et al. (2006) to naturally collected irregularly spaced time series data from an online adaptive practice system for mathematics called Math Garden. Results showed that the mutualism model provided a better fit to the…
Descriptors: Mathematics Skills, Skill Development, Time, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang, Tsung-Yen; Baker, Ryan S.; Studer, Christoph; Heffernan, Neil; Lan, Andrew S. – International Educational Data Mining Society, 2019
"Sensor-free" detectors of student affect that use only student activity data and no physical or physiological sensors are cost-effective and have potential to be applied at large scale in real classrooms. These detectors are trained using student affect labels collected from human observers as they observe students learn within…
Descriptors: Active Learning, Measurement Techniques, Intelligent Tutoring Systems, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khayi, Nisrine Ait; Rus, Vasile – International Educational Data Mining Society, 2019
In this paper, we applied a number of clustering algorithms on pretest data collected from 264 high-school students. Students took the pre-test at the beginning of a 5-week experiment in which they interacted with an intelligent tutoring system. The primary goal of this work is to identify clusters of students exhibiting similar knowledge…
Descriptors: High School Students, Cluster Grouping, Prior Learning, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xue, Linting; Lynch, Collin F.; Chi, Min – International Educational Data Mining Society, 2017
Augmented Graph Grammars are a graph-based rule formalism that supports rich relational structures. They can be used to represent complex social networks, chemical structures, and student-produced argument diagrams for automated analysis or grading. In prior work we have shown that Evolutionary Computation (EC) can be applied to induce…
Descriptors: Graphs, Visual Aids, Mathematics, Novelty (Stimulus Dimension)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Akram, Bita; Min, Wookhee; Wiebe, Eric; Mott, Bradford; Boyer, Kristy Elizabeth; Lester, James – International Educational Data Mining Society, 2018
A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term…
Descriptors: Educational Games, Problem Solving, Educational Environment, Short Term Memory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Durand, Guillaume; Goutte, Cyril; Léger, Serge – International Educational Data Mining Society, 2018
Knowledge tracing is a fundamental area of educational data modeling that aims at gaining a better understanding of the learning occurring in tutoring systems. Knowledge tracing models fit various parameters on observed student performance and are evaluated through several goodness of fit metrics. Fitted parameter values are of crucial interest in…
Descriptors: Error of Measurement, Models, Goodness of Fit, Predictive Validity
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xue, Linting; Lynch, Collin F.; Chi, Min – International Educational Data Mining Society, 2016
Graph data such as argument diagrams has become increasingly common in EDM. Augmented Graph Grammars are a robust rule formalism for graphs. Prior research has shown that hand-authored graph grammars can be used to automatically grade student-produced argument diagrams. But hand-authored rules can be time consuming and expensive to produce, and…
Descriptors: Graphs, Persuasive Discourse, College Students, Expertise
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhao, Siyuan; Heffernan, Neil – International Educational Data Mining Society, 2017
Personalized learning considers that the causal effects of a studied learning intervention may differ for the individual student. Making the inference about causal effects of studies interventions is a central problem. In this paper we propose the Residual Counterfactual Networks (RCN) for answering counterfactual inference questions, such as…
Descriptors: Computation, Outcomes of Treatment, Networks, Randomized Controlled Trials
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wilson, Kevin H.; Karklin, Yan; Han, Bojian; Ekanadham, Chaitanya – International Educational Data Mining Society, 2016
Estimating student proficiency is an important task for computer based learning systems. We compare a family of IRT-based proficiency estimation methods to Deep Knowledge Tracing (DKT), a recently proposed recurrent neural network model with promising initial results. We evaluate how well each model predicts a student's future response given…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Artificial Intelligence
Previous Page | Next Page »
Pages: 1  |  2