Publication Date
| In 2026 | 0 |
| Since 2025 | 18 |
| Since 2022 (last 5 years) | 83 |
| Since 2017 (last 10 years) | 310 |
| Since 2007 (last 20 years) | 701 |
Descriptor
| Structural Equation Models | 701 |
| Foreign Countries | 299 |
| Regression (Statistics) | 276 |
| Statistical Analysis | 236 |
| Correlation | 203 |
| Factor Analysis | 185 |
| Maximum Likelihood Statistics | 184 |
| Questionnaires | 170 |
| Least Squares Statistics | 168 |
| Student Attitudes | 113 |
| Predictor Variables | 108 |
| More ▼ | |
Source
Author
| Yuan, Ke-Hai | 10 |
| Savalei, Victoria | 8 |
| Zhang, Zhiyong | 8 |
| Lee, Sik-Yum | 7 |
| Bentler, Peter M. | 6 |
| Ke-Hai Yuan | 6 |
| Song, Xin-Yuan | 6 |
| Zhiyong Zhang | 5 |
| Asparouhov, Tihomir | 4 |
| Eren, Altay | 4 |
| Lijuan Wang | 4 |
| More ▼ | |
Publication Type
Education Level
Location
| Turkey | 24 |
| Germany | 23 |
| Malaysia | 21 |
| China | 19 |
| Australia | 16 |
| Taiwan | 12 |
| Iran | 10 |
| Netherlands | 10 |
| Norway | 10 |
| United Kingdom | 10 |
| Finland | 9 |
| More ▼ | |
Laws, Policies, & Programs
| Aid to Families with… | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Keke Lai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
When a researcher proposes an SEM model to explain the dynamics among some latent variables, the real question in model evaluation is the fit of the model's structural part. A composite index that lumps the fit of the structural part and measurement part does not directly address that question. The need for more attention to structural-level fit…
Descriptors: Goodness of Fit, Structural Equation Models, Statistics, Statistical Distributions
W. Holmes Finch – Educational and Psychological Measurement, 2024
Dominance analysis (DA) is a very useful tool for ordering independent variables in a regression model based on their relative importance in explaining variance in the dependent variable. This approach, which was originally described by Budescu, has recently been extended to use with structural equation models examining relationships among latent…
Descriptors: Models, Regression (Statistics), Structural Equation Models, Predictor Variables
Jalal, Azlin Abd; Hamid, Harris Shah Abd; Zulnaidi, Hutkemri – Malaysian Online Journal of Educational Sciences, 2023
In this new era drenched with data, statistical literacy becomes more essential for individuals to be able to read, communicate, and make informed decisions. Moreover, statistical literacy is highly essential for education policy makers who are highly accountable for all policy outcomes including school improvement, resource allocation, curriculum…
Descriptors: Statistics, Literacy, Educational Policy, Mathematics Anxiety
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Sarah Depaoli; Sonja D. Winter; Haiyan Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We extended current knowledge by examining the performance of several Bayesian model fit and comparison indices through a simulation study using the confirmatory factor analysis. Our goal was to determine whether commonly implemented Bayesian indices can detect specification errors. Specifically, we wanted to uncover any differences in detecting…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Testing, Evaluation Utilization
Hongxi Li; Shuwei Li; Liuquan Sun; Xinyuan Song – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Structural equation models offer a valuable tool for delineating the complicated interrelationships among multiple variables, including observed and latent variables. Over the last few decades, structural equation models have successfully analyzed complete and right-censored survival data, exemplified by wide applications in psychological, social,…
Descriptors: Statistical Analysis, Statistical Studies, Structural Equation Models, Intervals
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Ram B. Basnet; David J. Lemay; Paul Bazelais – Knowledge Management & E-Learning, 2024
Academic and practitioner interest in data science has increased considerably. Yet scholarly understanding of what motivates students to learn data science is still limited. Drawing on the theory of planned behavior, we propose a research model to examine the determinants of behavioral intentions to learn data science. In the proposed research…
Descriptors: Student Attitudes, Intention, Data Science, Statistics Education
Ke-Hai Yuan; Yongfei Fang – Grantee Submission, 2023
Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and…
Descriptors: Structural Equation Models, Regression (Statistics), Weighted Scores, Comparative Analysis
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Zachary J. Roman; Patrick Schmidt; Jason M. Miller; Holger Brandt – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Careless and insufficient effort responding (C/IER) is a situation where participants respond to survey instruments without considering the item content. This phenomena adds noise to data leading to erroneous inference. There are multiple approaches to identifying and accounting for C/IER in survey settings, of these approaches the best performing…
Descriptors: Structural Equation Models, Bayesian Statistics, Response Style (Tests), Robustness (Statistics)
Servet Demir; Muhammet Usak – SAGE Open, 2025
This systematic review examines the application of Partial Least Squares Structural Equation Modeling (PLS-SEM) in educational technology research from 2013 to 2023. Following PRISMA guidelines, 57 studies were selected from Scopus and Web of Science databases. The review process involved rigorous screening, data extraction, and analysis using…
Descriptors: Educational Technology, Educational Research, Structural Equation Models, Least Squares Statistics
Deng, Lifang; Yuan, Ke-Hai – Grantee Submission, 2022
Structural equation modeling (SEM) has been deemed as a proper method when variables contain measurement errors. In contrast, path analysis with composite-scores is preferred for prediction and diagnosis of individuals. While path analysis with composite-scores has been criticized for yielding biased parameter estimates, recent literature pointed…
Descriptors: Structural Equation Models, Path Analysis, Weighted Scores, Error of Measurement

Peer reviewed
Direct link
