NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 202532
Since 2022 (last 5 years)274
Since 2017 (last 10 years)570
Since 2007 (last 20 years)1299
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 1,299 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hanke Vermeiren; Abe D. Hofman; Maria Bolsinova – International Educational Data Mining Society, 2025
The traditional Elo rating system (ERS), widely used as a student model in adaptive learning systems, assumes unidimensionality (i.e., all items measure a single ability or skill), limiting its ability to handle multidimensional data common in educational contexts. In response, several multidimensional extensions of the Elo rating system have been…
Descriptors: Item Response Theory, Models, Comparative Analysis, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Annie Jézégou – Asian Journal of Distance Education, 2025
This article provides responses to the following questions: what are the major properties of 'remote presence'? What is meant by social presence in e-learning? What are the specific characteristics of the theoretical model of social presence in e-learning (MSP-elearning)? The responses offered are the result of work on characterisation of 'remote…
Descriptors: Distance Education, Electronic Learning, Models, Cooperative Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Caleb Or – International Journal of Technology in Education and Science, 2025
The Unified Theory of Acceptance and Use of Technology (UTAUT) and its successor, UTAUT2, were widely recognised frameworks for understanding technology adoption in organisational and consumer contexts. UTAUT2 extended the original framework by introducing constructs such as hedonic motivation, price value, and habit, broadening its applicability…
Descriptors: Artificial Intelligence, Educational Technology, Adoption (Ideas), Models
Peer reviewed Peer reviewed
Direct linkDirect link
Abdessamad Chanaa; Nour-eddine El Faddouli – Smart Learning Environments, 2024
The recommendation is an active area of scientific research; it is also a challenging and fundamental problem in online education. However, classical recommender systems usually suffer from item cold-start issues. Besides, unlike other fields like e-commerce or entertainment, e-learning recommendations must ensure that learners have the adequate…
Descriptors: Artificial Intelligence, Prerequisites, Metadata, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Safa Ridha Albo Abdullah; Ahmed Al-Azawei – International Review of Research in Open and Distributed Learning, 2025
This systematic review sheds light on the role of ontologies in predicting achievement among online learners, in order to promote their academic success. In particular, it looks at the available literature on predicting online learners' performance through ontological machine-learning techniques and, using a systematic approach, identifies the…
Descriptors: Electronic Learning, Academic Achievement, Grade Prediction, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Nabila Khodeir; Fatma Elghannam – Education and Information Technologies, 2025
MOOC platforms provide a means of communication through forums, allowing learners to express their difficulties and challenges while studying various courses. Within these forums, some posts require urgent attention from instructors. Failing to respond promptly to these posts can contribute to higher dropout rates and lower course completion…
Descriptors: MOOCs, Computer Mediated Communication, Conferences (Gatherings), Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
R. K. Kapila Vani; P. Jayashree – Education and Information Technologies, 2025
Emotions of learners are fundamental and significant in e-learning as they encourage learning. Machine learning models are presented in the literature to look at how emotions may affect e-learning results that are improved and optimized. Nevertheless, the models that have been suggested so far are appropriate for offline mode, whereby data for…
Descriptors: Electronic Learning, Psychological Patterns, Artificial Intelligence, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Adem Özkan; Isak Çevik; Esin Saylan; Ünal Çakiroglu – International Review of Research in Open and Distributed Learning, 2025
With the rapid evolution of online learning, driven by technological advancements and the global transition to distance education during the COVID-19 pandemic, the demand for effective instructional design models has become increasingly critical. This study conducted a systematic mapping analysis of instructional design models tailored for online…
Descriptors: Instructional Design, Electronic Learning, Educational Trends, Futures (of Society)
Peer reviewed Peer reviewed
Direct linkDirect link
Ahmed A. Alsayer; Jonathan Templin; Chris Niileksela; Bruce B. Frey – Education and Information Technologies, 2025
Prior research on the "Community of Inquiry" (CoI) framework has a limited amount of work which uses structural techniques to confirm the factorial structure of the CoI. The current study investigates the structural relationships among the three elements of the CoI framework (cognitive presence, teaching presence, and social presence),…
Descriptors: Communities of Practice, Inquiry, Online Courses, Educational Experience
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Prihar, Ethan; Vanacore, Kirk; Sales, Adam; Heffernan, Neil – International Educational Data Mining Society, 2023
There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized experiments that evaluate problem-level interventions in…
Descriptors: Electronic Learning, Intervention, Instructional Effectiveness, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Monsalve-Pulido, Julian; Aguilar, Jose; Montoya, Edwin – Education and Information Technologies, 2023
The adaptation of traditional systems to service-oriented architectures is very frequent, due to the increase in technologies for this type of architecture. This has led to the construction of frameworks or methodologies for adapting computational projects to service-oriented architecture (SOA) technology. In this work, a framework for adaptation…
Descriptors: Artificial Intelligence, Information Technology, Design, Governance
Peer reviewed Peer reviewed
Direct linkDirect link
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Danielle Kearns-Sixsmith – Mentoring & Tutoring: Partnership in Learning, 2024
Tutoring promotes student achievement, academic independence, and the reduction of anxiety. While ample studies support tutoring for enhancing student success, few address how to evaluate tutoring. This quandary led to research in building and testing a meta-model that identified the hallmarks of one-on-one high-quality online tutoring.…
Descriptors: Electronic Learning, Tutoring, Higher Education, Educational Quality
Peer reviewed Peer reviewed
Direct linkDirect link
Adil Boughida; Mohamed Nadjib Kouahla; Yacine Lafifi – Education and Information Technologies, 2024
In e-learning environments, most adaptive systems do not consider the learner's emotional state when recommending activities for learning difficulties, blockages, or demotivation. In this paper, we propose a new approach of emotion-based adaptation in e-learning environments. The system will allow recommendation resources/activities to motivate…
Descriptors: Psychological Patterns, Electronic Learning, Educational Environment, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  87