Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 13 |
| Since 2007 (last 20 years) | 18 |
Descriptor
| Bayesian Statistics | 18 |
| Factor Structure | 18 |
| Factor Analysis | 9 |
| Sample Size | 7 |
| Structural Equation Models | 6 |
| Correlation | 5 |
| Item Response Theory | 5 |
| Psychometrics | 5 |
| Computation | 4 |
| Evaluation Methods | 4 |
| Goodness of Fit | 4 |
| More ▼ | |
Source
Author
| Fujimoto, Ken A. | 2 |
| Liang, Xinya | 2 |
| Xia, Yan | 2 |
| Yang, Yanyun | 2 |
| Adrian Quintero | 1 |
| Aryadoust, Vahid | 1 |
| Atar, Burcu | 1 |
| Beretvas, S. Natasha | 1 |
| Canivez, Gary L. | 1 |
| Cohen, Allan S. | 1 |
| Dombrowski, Stefan C. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 15 |
| Reports - Research | 14 |
| Reports - Evaluative | 2 |
| Dissertations/Theses -… | 1 |
| Reports - Descriptive | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
| Differential Aptitude Test | 1 |
| Preschool and Kindergarten… | 1 |
What Works Clearinghouse Rating
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Teck Kiang Tan – Practical Assessment, Research & Evaluation, 2024
The procedures of carrying out factorial invariance to validate a construct were well developed to ensure the reliability of the construct that can be used across groups for comparison and analysis, yet mainly restricted to the frequentist approach. This motivates an update to incorporate the growing Bayesian approach for carrying out the Bayesian…
Descriptors: Bayesian Statistics, Factor Analysis, Programming Languages, Reliability
Levy, Roy; Xia, Yan; Green, Samuel B. – Educational and Psychological Measurement, 2021
A number of psychometricians have suggested that parallel analysis (PA) tends to yield more accurate results in determining the number of factors in comparison with other statistical methods. Nevertheless, all too often PA can suggest an incorrect number of factors, particularly in statistically unfavorable conditions (e.g., small sample sizes and…
Descriptors: Bayesian Statistics, Statistical Analysis, Factor Structure, Probability
Fujimoto, Ken A.; Neugebauer, Sabina R. – Educational and Psychological Measurement, 2020
Although item response theory (IRT) models such as the bifactor, two-tier, and between-item-dimensionality IRT models have been devised to confirm complex dimensional structures in educational and psychological data, they can be challenging to use in practice. The reason is that these models are multidimensional IRT (MIRT) models and thus are…
Descriptors: Bayesian Statistics, Item Response Theory, Sample Size, Factor Structure
Liang, Xinya – Educational and Psychological Measurement, 2020
Bayesian structural equation modeling (BSEM) is a flexible tool for the exploration and estimation of sparse factor loading structures; that is, most cross-loading entries are zero and only a few important cross-loadings are nonzero. The current investigation was focused on the BSEM with small-variance normal distribution priors (BSEM-N) for both…
Descriptors: Factor Structure, Bayesian Statistics, Structural Equation Models, Goodness of Fit
Liu, Tingting; Aryadoust, Vahid; Foo, Stacy – Language Testing, 2022
This study evaluated the validity of the Michigan English Test (MET) Listening Section by investigating its underlying factor structure and the replicability of its factor structure across multiple test forms. Data from 3255 test takers across four forms of the MET Listening Section were used. To investigate the factor structure, each form was…
Descriptors: Factor Structure, Language Tests, Second Language Learning, Second Language Instruction
Fujimoto, Ken A. – Educational and Psychological Measurement, 2019
Advancements in item response theory (IRT) have led to models for dual dependence, which control for cluster and method effects during a psychometric analysis. Currently, however, this class of models does not include one that controls for when the method effects stem from two method sources in which one source functions differently across the…
Descriptors: Bayesian Statistics, Item Response Theory, Psychometrics, Models
Thomas, Sarah; Eichas, Kyle; Eninger, Lilianne; Ferrer-Wreder, Laura – Scandinavian Journal of Educational Research, 2021
This cross-sectional study established the psychometric properties and factor structure of the Preschool and Kindergarten Behavior Scales (PKBS) and an index of empathy in a sample of Swedish four to six year olds (N = 115). Using Bayesian structural equation modeling, we found that a five-factor PKBS and one-factor empathy model provided good fit…
Descriptors: Psychometrics, Swedish, Foreign Countries, Test Construction
Kilic, Abdullah Faruk; Uysal, Ibrahim; Atar, Burcu – International Journal of Assessment Tools in Education, 2020
This Monte Carlo simulation study aimed to investigate confirmatory factor analysis (CFA) estimation methods under different conditions, such as sample size, distribution of indicators, test length, average factor loading, and factor structure. Binary data were generated to compare the performance of maximum likelihood (ML), mean and variance…
Descriptors: Factor Analysis, Computation, Methods, Sample Size
Yang, Yanyun; Xia, Yan – Educational and Psychological Measurement, 2019
When item scores are ordered categorical, categorical omega can be computed based on the parameter estimates from a factor analysis model using frequentist estimators such as diagonally weighted least squares. When the sample size is relatively small and thresholds are different across items, using diagonally weighted least squares can yield a…
Descriptors: Scores, Sample Size, Bayesian Statistics, Item Analysis
Huang, Jiajing; Liang, Xinya; Yang, Yanyun – AERA Online Paper Repository, 2017
In Bayesian structural equation modeling (BSEM), prior settings may affect model fit, parameter estimation, and model comparison. This simulation study was to investigate how the priors impact evaluation of relative fit across competing models. The design factors for data generation included sample sizes, factor structures, data distributions, and…
Descriptors: Bayesian Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L. – Psychology in the Schools, 2018
Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…
Descriptors: Structural Equation Models, Bayesian Statistics, Factor Analysis, Aptitude Tests
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Lee, HwaYoung; Beretvas, S. Natasha – Educational and Psychological Measurement, 2014
Conventional differential item functioning (DIF) detection methods (e.g., the Mantel-Haenszel test) can be used to detect DIF only across observed groups, such as gender or ethnicity. However, research has found that DIF is not typically fully explained by an observed variable. True sources of DIF may include unobserved, latent variables, such as…
Descriptors: Item Analysis, Factor Structure, Bayesian Statistics, Goodness of Fit
Md Desa, Zairul Nor Deana – ProQuest LLC, 2012
In recent years, there has been increasing interest in estimating and improving subscore reliability. In this study, the multidimensional item response theory (MIRT) and the bi-factor model were combined to estimate subscores, to obtain subscores reliability, and subscores classification. Both the compensatory and partially compensatory MIRT…
Descriptors: Item Response Theory, Computation, Reliability, Classification
Previous Page | Next Page ยป
Pages: 1 | 2
Peer reviewed
Direct link
