NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)1
Since 2016 (last 10 years)8
Since 2006 (last 20 years)15
Audience
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 15 results Save | Export
Xu, Ziqian; Hai, Jiarui; Yang, Yutong; Zhang, Zhiyong – Grantee Submission, 2022
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past…
Descriptors: Social Networks, Network Analysis, Data Analysis, Bayesian Statistics
Mai, Yujiao; Zhang, Zhiyong; Wen, Zhonglin – Grantee Submission, 2018
Exploratory structural equation modeling (ESEM) is an approach for analysis of latent variables using exploratory factor analysis to evaluate the measurement model. This study compared ESEM with two dominant approaches for multiple regression with latent variables, structural equation modeling (SEM) and manifest regression analysis (MRA). Main…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Comparative Analysis, Statistical Bias
Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2017
Misclassification means the observed category is different from the underlying one and it is a form of measurement error in categorical data. The measurement error in continuous, especially normally distributed, data is well known and studied in the literature. But the misclassification in a binary outcome variable has not yet drawn much attention…
Descriptors: Classification, Regression (Statistics), Statistical Bias, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Yuan, Ke-Hai – Educational and Psychological Measurement, 2016
Cronbach's coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald's omega has been used as a popular alternative to alpha in the literature. Traditional estimation…
Descriptors: Computation, Statistical Analysis, Robustness (Statistics), Error of Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2016
Cronbach's coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald's omega has been used as a popular alternative to alpha in the literature. Traditional estimation…
Descriptors: Computation, Error of Measurement, Robustness (Statistics), Statistical Analysis
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Cain, Meghan K.; Zhang, Zhiyong; Yuan, Ke-Hai – Grantee Submission, 2017
Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of…
Descriptors: Multivariate Analysis, Probability, Statistical Distributions, Psychological Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Haiyan; Zhang, Zhiyong; Grimm, Kevin J. – Grantee Submission, 2016
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due…
Descriptors: Bayesian Statistics, Computation, Statistical Analysis, Growth Models
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xin; Zhang, Zhiyong – Multivariate Behavioral Research, 2012
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
Descriptors: Models, Robustness (Statistics), Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta – Multivariate Behavioral Research, 2011
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
Descriptors: Bayesian Statistics, Statistical Inference, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hamaker, Ellen L.; Zhang, Zhiyong; van der Maas, Han L. J. – Psychometrika, 2009
Considering a dyad as a dynamic system whose current state depends on its past state has allowed researchers to investigate whether and how partners influence each other. Some researchers have also focused on how differences between dyads in their interaction patterns are related to other differences between them. A promising approach in this area…
Descriptors: Simulation, Interaction, Computation, Researchers
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J. – International Journal of Behavioral Development, 2007
Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…
Descriptors: Computation, Bayesian Statistics, Statistical Analysis, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Nesselroade, John R. – Multivariate Behavioral Research, 2007
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Descriptors: Bayesian Statistics, Computation, Simulation, Behavioral Science Research