NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Schweizer, Karl; Troche, Stefan – Educational and Psychological Measurement, 2018
In confirmatory factor analysis quite similar models of measurement serve the detection of the difficulty factor and the factor due to the item-position effect. The item-position effect refers to the increasing dependency among the responses to successively presented items of a test whereas the difficulty factor is ascribed to the wide range of…
Descriptors: Investigations, Difficulty Level, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Lichtenberg, Peter A.; Paulson, Daniel – Structural Equation Modeling: A Multidisciplinary Journal, 2012
A multiple testing procedure for examining implications of the missing completely at random (MCAR) mechanism in incomplete data sets is discussed. The approach uses the false discovery rate concept and is concerned with testing group differences on a set of variables. The method can be used for ascertaining violations of MCAR and disproving this…
Descriptors: Data, Data Analysis, Older Adults, Intelligence Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Educational and Psychological Measurement, 2014
This research note contributes to the discussion of methods that can be used to identify useful auxiliary variables for analyses of incomplete data sets. A latent variable approach is discussed, which is helpful in finding auxiliary variables with the property that if included in subsequent maximum likelihood analyses they may enhance considerably…
Descriptors: Data Analysis, Identification, Maximum Likelihood Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wicherts, Jelte M.; Bakker, Marjan – Intelligence, 2012
The authors argue that upon publication of a paper, the data should be made available through online archives or repositories. Reasons for not sharing data are discussed and contrasted with advantages of sharing, which include abiding by the scientific principle of openness, keeping the data for posterity, increasing one's impact, facilitation of…
Descriptors: Data, Publications, College Freshmen, Intelligence Tests