Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 7 |
Descriptor
Computation | 7 |
Models | 7 |
Bayesian Statistics | 4 |
Longitudinal Studies | 4 |
Data Analysis | 2 |
Markov Processes | 2 |
Nonverbal Ability | 2 |
Simulation | 2 |
Statistical Analysis | 2 |
Affective Behavior | 1 |
Behavior Change | 1 |
More ▼ |
Author
Zhang, Zhiyong | 7 |
Nesselroade, John R. | 2 |
Grimm, Kevin J. | 1 |
Hamagami, Fumiaki | 1 |
Hamaker, Ellen L. | 1 |
Liu, Haiyan | 1 |
Lu, Zhenqiu Laura | 1 |
Lubke, Gitta | 1 |
Tong, Xin | 1 |
Wang, Lijuan Lijuan | 1 |
van der Maas, Han L. J. | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 5 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Grade 10 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 4 |
Early Childhood Longitudinal… | 1 |
Peabody Individual… | 1 |
What Works Clearinghouse Rating
Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2017
Misclassification means the observed category is different from the underlying one and it is a form of measurement error in categorical data. The measurement error in continuous, especially normally distributed, data is well known and studied in the literature. But the misclassification in a binary outcome variable has not yet drawn much attention…
Descriptors: Classification, Regression (Statistics), Statistical Bias, Models
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Tong, Xin; Zhang, Zhiyong – Multivariate Behavioral Research, 2012
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
Descriptors: Models, Robustness (Statistics), Statistical Analysis, Error of Measurement
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta – Multivariate Behavioral Research, 2011
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
Descriptors: Bayesian Statistics, Statistical Inference, Computation, Models
Hamaker, Ellen L.; Zhang, Zhiyong; van der Maas, Han L. J. – Psychometrika, 2009
Considering a dyad as a dynamic system whose current state depends on its past state has allowed researchers to investigate whether and how partners influence each other. Some researchers have also focused on how differences between dyads in their interaction patterns are related to other differences between them. A promising approach in this area…
Descriptors: Simulation, Interaction, Computation, Researchers
Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J. – International Journal of Behavioral Development, 2007
Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…
Descriptors: Computation, Bayesian Statistics, Statistical Analysis, Longitudinal Studies
Zhang, Zhiyong; Nesselroade, John R. – Multivariate Behavioral Research, 2007
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Descriptors: Bayesian Statistics, Computation, Simulation, Behavioral Science Research