NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Thompson, Bruce; Daniel, Larry – 1991
Multivariate methods are being used with increasing frequency in educational research because these methods control "experimentwise" error rate inflation, and because the methods best honor the nature of the reality to which the researcher wishes to generalize. This paper: explains the basic logic of canonical analysis; illustrates that…
Descriptors: Correlation, Educational Research, Generalizability Theory, Mathematical Models
Peer reviewed Peer reviewed
Thompson, Bruce – Educational and Psychological Measurement, 1990
A Monte Carlo study involving 1,000 random samples from each of 64 different population matrices investigated bias in both canonical correlation and redundancy coefficients. Results indicate that the Wherry correction provides a reasonable solution to this problem and that canonical results are not as biased as has been believed. (TJH)
Descriptors: Error of Measurement, Monte Carlo Methods, Multivariate Analysis, Relationship
PDF pending restoration PDF pending restoration
Thompson, Bruce – 1989
In the present study Monte Carlo methods were employed to evaluate the degree to which canonical function and structure coefficients may be differentially sensitive to sampling error. Sampling error influences were investigated across variations in variable and sample (n) sizes, and across variations in average within-set correlation sizes and in…
Descriptors: Computer Simulation, Correlation, Monte Carlo Methods, Multivariate Analysis
Thompson, Bruce – 1988
Canonical correlation analysis is a powerful statistical method subsuming other parametric significance tests as special cases, and which can often best honor the complex reality to which most researchers wish to generalize. However, it has been suggested that the canonical correlation coefficient is positively biased. A Monte Carlo study…
Descriptors: Computer Simulation, Correlation, Error of Measurement, Monte Carlo Methods
Thompson, Bruce – 1992
Conventional statistical significance tests do not inform the researcher regarding the likelihood that results will replicate. One strategy for evaluating result replication is to use a "bootstrap" resampling of a study's data so that the stability of results across numerous configurations of the subjects can be explored. This paper…
Descriptors: Analysis of Covariance, Analysis of Variance, Correlation, Discriminant Analysis