Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 3 |
Descriptor
| Bayesian Statistics | 3 |
| Learning | 3 |
| Cognitive Development | 2 |
| Models | 2 |
| Theories | 2 |
| Causal Models | 1 |
| Child Development | 1 |
| Children | 1 |
| Cognitive Psychology | 1 |
| Concept Formation | 1 |
| Experience | 1 |
| More ▼ | |
Author
| Goodman, Noah D. | 3 |
| Tenenbaum, Joshua B. | 3 |
| Ullman, Tomer D. | 2 |
| Feldman, Jacob | 1 |
| Griffiths, Thomas L. | 1 |
Publication Type
| Journal Articles | 3 |
| Reports - Evaluative | 2 |
| Reports - Descriptive | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ullman, Tomer D.; Goodman, Noah D.; Tenenbaum, Joshua B. – Cognitive Development, 2012
We present an algorithmic model for the development of children's intuitive theories within a hierarchical Bayesian framework, where theories are described as sets of logical laws generated by a probabilistic context-free grammar. We contrast our approach with connectionist and other emergentist approaches to modeling cognitive development. While…
Descriptors: Children, Learning, Child Development, Intuition
Goodman, Noah D.; Ullman, Tomer D.; Tenenbaum, Joshua B. – Psychological Review, 2011
The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be…
Descriptors: Causal Models, Logical Thinking, Cognitive Development, Bayesian Statistics
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L. – Cognitive Science, 2008
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Descriptors: Mathematics Education, Concept Formation, Models, Prediction

Peer reviewed
Direct link
