Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 7 |
Descriptor
Author
| Schochet, Peter Z. | 7 |
| Kautz, Tim | 1 |
| Tilley, Charles | 1 |
Publication Type
| Reports - Research | 4 |
| Reports - Evaluative | 2 |
| Journal Articles | 1 |
| Numerical/Quantitative Data | 1 |
| Reports - Descriptive | 1 |
Education Level
| Elementary Education | 2 |
Audience
| Policymakers | 1 |
| Teachers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2017
Design-based methods have recently been developed as a way to analyze data from impact evaluations of interventions, programs, and policies. The impact estimators are derived using the building blocks of experimental designs with minimal assumptions, and have good statistical properties. The methods apply to randomized controlled trials (RCTs) and…
Descriptors: Design, Randomized Controlled Trials, Quasiexperimental Design, Research Methodology
Kautz, Tim; Schochet, Peter Z.; Tilley, Charles – National Center for Education Evaluation and Regional Assistance, 2017
A new design-based theory has recently been developed to estimate impacts for randomized controlled trials (RCTs) and basic quasi-experimental designs (QEDs) for a wide range of designs used in social policy research (Imbens & Rubin, 2015; Schochet, 2016). These methods use the potential outcomes framework and known features of study designs…
Descriptors: Design, Randomized Controlled Trials, Quasiexperimental Design, Research Methodology
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2017
Design-based methods have recently been developed as a way to analyze data from impact evaluations of interventions, programs, and policies (Imbens and Rubin, 2015; Schochet, 2015, 2016). The estimators are derived using the building blocks of experimental designs with minimal assumptions, and are unbiased and normally distributed in large samples…
Descriptors: Design, Randomized Controlled Trials, Quasiexperimental Design, Research Methodology
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2013
In education randomized control trials (RCTs), the misreporting of student outcome data could lead to biased estimates of average treatment effects (ATEs) and their standard errors. This article discusses a statistical model that adjusts for misreported binary outcomes for two-level, school-based RCTs, where it is assumed that misreporting could…
Descriptors: Control Groups, Experimental Groups, Educational Research, Data Analysis
Schochet, Peter Z. – Society for Research on Educational Effectiveness, 2013
In randomized control trials (RCTs) of educational interventions, there is a growing literature on impact estimation methods to adjust for missing student outcome data using such methods as multiple imputation, the construction of nonresponse weights, casewise deletion, and maximum likelihood methods (see, for example, Allison, 2002; Graham, 2009;…
Descriptors: Control Groups, Experimental Groups, Educational Research, Data Analysis
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
For RCTs of education interventions, it is often of interest to estimate associations between student and mediating teacher practice outcomes, to examine the extent to which the study's conceptual model is supported by the data, and to identify specific mediators that are most associated with student learning. This paper develops statistical power…
Descriptors: Statistical Analysis, Intervention, Teacher Influence, Teaching Methods
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2009
This paper examines the estimation of two-stage clustered RCT designs in education research using the Neyman causal inference framework that underlies experiments. The key distinction between the considered causal models is whether potential treatment and control group outcomes are considered to be fixed for the study population (the…
Descriptors: Control Groups, Causal Models, Statistical Significance, Computation

Peer reviewed
Direct link
