Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 11 |
| Since 2007 (last 20 years) | 11 |
Descriptor
| Kinetics | 11 |
| Science Instruction | 10 |
| Chemistry | 8 |
| Scientific Concepts | 6 |
| Undergraduate Students | 6 |
| College Science | 5 |
| Logical Thinking | 5 |
| Graphs | 4 |
| Mathematics | 4 |
| Problem Solving | 4 |
| Biochemistry | 3 |
| More ▼ | |
Author
| Rodriguez, Jon-Marc G. | 11 |
| Towns, Marcy H. | 9 |
| Bain, Kinsey | 6 |
| Becker, Nicole M. | 2 |
| Hux, Nicholas P. | 2 |
| Elmgren, Maja | 1 |
| Harrison, A. Rayford | 1 |
| Ho, Felix M. | 1 |
| Moon, Alena | 1 |
| Philips, Sven J. | 1 |
| Santos-Diaz, Stephanie | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 11 |
| Reports - Research | 9 |
| Reports - Evaluative | 2 |
| Information Analyses | 1 |
Education Level
| Higher Education | 10 |
| Postsecondary Education | 8 |
Audience
Location
| Sweden | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rodriguez, Jon-Marc G.; Towns, Marcy H. – Journal of Chemical Education, 2019
Analogies are useful tools instructors can use to help make challenging concepts less abstract by drawing connections to familiar contexts. In this paper we provide an overview of the various analogies published in the education literature that are situated in the context of enzyme kinetics, including narrative-based analogies (analogies intended…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
Rodriguez, Jon-Marc G.; Harrison, A. Rayford; Becker, Nicole M. – Journal of Chemical Education, 2020
With recent curricular movements aimed at engaging students in science practices, more work is needed regarding evidence-based approaches for supporting students in developing competency in contexts such as chemistry. In this work, we focus on student engagement in constructing models related to graphical representations of reaction rate. Using…
Descriptors: Learner Engagement, Chemistry, Science Instruction, Graphs
Rodriguez, Jon-Marc G.; Hux, Nicholas P.; Philips, Sven J.; Towns, Marcy H. – Journal of Chemical Education, 2019
This work seeks to add to the growing body of chemistry education research that emphasizes the teaching and learning of advanced topics, focusing on students' understanding of enzyme kinetics. The data corpus relevant to this study involved 14 second-year undergraduate students enrolled in an introductory biochemistry course taught in a chemistry…
Descriptors: Graphs, Introductory Courses, Biochemistry, Science Instruction
Rodriguez, Jon-Marc G.; Towns, Marcy H. – Chemistry Education Research and Practice, 2019
Student understanding regarding topics in upper-division courses, such as biochemistry, is not well represented in the literature. Herein we describe a study that investigated students' reasoning about Michaelis-Menten enzyme kinetics and enzyme inhibition. Our qualitative study involved semistructured interviews with fourteen second-year students…
Descriptors: Science Instruction, Scientific Concepts, Logical Thinking, Concept Formation
Rodriguez, Jon-Marc G.; Stricker, Avery R.; Becker, Nicole M. – Journal of Chemical Education, 2020
Chemical kinetics is an important topic that is reinforced across the undergraduate chemistry curriculum, but previous research indicates students tend to have difficulty developing a sophisticated understanding of reaction rate. In this qualitative case study, we characterized how two students conceptualized reaction rate in the context of…
Descriptors: Science Instruction, Chemistry, Kinetics, Undergraduate Study
Rodriguez, Jon-Marc G.; Santos-Diaz, Stephanie; Bain, Kinsey; Towns, Marcy H. – Journal of Chemical Education, 2018
This work is part of a larger project that seeks to understand how students blend (integrate) chemistry and mathematics as they work through chemical kinetics problems. Here we focus on four students from our larger sample: two students that demonstrated more instances of blending chemistry and mathematics in their interviews ("high-frequency…
Descriptors: Mathematical Logic, Kinetics, Symbols (Mathematics), Graphs
Rodriguez, Jon-Marc G.; Bain, Kinsey; Hux, Nicholas P.; Towns, Marcy H. – Chemistry Education Research and Practice, 2019
Problem solving is a critical feature of highly quantitative physical science topics, such as chemical kinetics. In order to solve a problem, students must cue into relevant features, ignore irrelevant features, and choose among potential problem-solving approaches. However, what is considered appropriate or productive for problem solving is…
Descriptors: Science Instruction, Problem Solving, Chemistry, Kinetics
Bain, Kinsey; Rodriguez, Jon-Marc G.; Towns, Marcy H. – Journal of Chemical Education, 2019
The themes discussed in this study relate to how students reason about the information encoded in rate constants, which is important for developing a deep understanding of chemical kinetics at the molecular level. This study is part of a larger project centered more generally on students' understanding and use of mathematics in chemical kinetics.…
Descriptors: Science Instruction, Teaching Methods, Molecular Structure, Scientific Concepts
Rodriguez, Jon-Marc G.; Bain, Kinsey; Towns, Marcy H.; Elmgren, Maja; Ho, Felix M. – Chemistry Education Research and Practice, 2019
Graphical representations are an important tool used to model abstract processes in fields such as chemistry. Successful interpretation of a graph involves a combination of mathematical expertise and discipline-specific content to reason about the relationship between the variables and to describe the phenomena represented. In this work, we…
Descriptors: Mathematics Instruction, Mathematical Logic, Integrated Curriculum, Student Attitudes
Bain, Kinsey; Rodriguez, Jon-Marc G.; Towns, Marcy H. – Journal of Chemical Education, 2018
Zero-order systems provide an interesting opportunity for students to think about the underlying mechanism behind the physical phenomena being modeled. The work reported here is part of a larger study that seeks to characterize how students integrate chemistry and mathematics in the context of chemical kinetics. Thirty-six general chemistry…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Study
Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H. – Chemistry Education Research and Practice, 2018
Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…
Descriptors: Chemistry, Science Instruction, Qualitative Research, Undergraduate Students

Peer reviewed
Direct link
