Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 4 |
Descriptor
Author
| Cai, Li | 4 |
| Falk, Carl F. | 2 |
| Monroe, Scott | 1 |
Publication Type
| Reports - Research | 3 |
| Journal Articles | 2 |
| Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Falk, Carl F.; Cai, Li – Grantee Submission, 2016
We present a logistic function of a monotonic polynomial with a lower asymptote, allowing additional flexibility beyond the three-parameter logistic model. We develop a maximum marginal likelihood based approach to estimate the item parameters. The new item response model is demonstrated on math assessment data from a state, and a computationally…
Descriptors: Item Response Theory, Guessing (Tests), Mathematics Tests, Simulation
Falk, Carl F.; Cai, Li – Journal of Educational Measurement, 2016
We present a logistic function of a monotonic polynomial with a lower asymptote, allowing additional flexibility beyond the three-parameter logistic model. We develop a maximum marginal likelihood-based approach to estimate the item parameters. The new item response model is demonstrated on math assessment data from a state, and a computationally…
Descriptors: Item Response Theory, Guessing (Tests), Mathematics Tests, Simulation
Cai, Li; Monroe, Scott – National Center for Research on Evaluation, Standards, and Student Testing (CRESST), 2014
We propose a new limited-information goodness of fit test statistic C[subscript 2] for ordinal IRT models. The construction of the new statistic lies formally between the M[subscript 2] statistic of Maydeu-Olivares and Joe (2006), which utilizes first and second order marginal probabilities, and the M*[subscript 2] statistic of Cai and Hansen…
Descriptors: Item Response Theory, Models, Goodness of Fit, Probability
Cai, Li – Psychometrika, 2010
A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…
Descriptors: Quality of Life, Factor Structure, Factor Analysis, Computation

Peer reviewed
Direct link
