Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 19 |
| Since 2007 (last 20 years) | 69 |
Descriptor
| Problem Solving | 138 |
| Scientific Concepts | 138 |
| Science Instruction | 98 |
| Teaching Methods | 53 |
| Physics | 47 |
| Science Activities | 43 |
| Science Education | 38 |
| Secondary School Science | 31 |
| College Science | 30 |
| Scientific Principles | 22 |
| Chemistry | 21 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Teachers | 138 |
| Practitioners | 65 |
| Students | 11 |
| Researchers | 9 |
Location
| Australia | 2 |
| United Kingdom | 2 |
| Brazil | 1 |
| California | 1 |
| Canada | 1 |
| Chile | 1 |
| France | 1 |
| Hong Kong | 1 |
| Idaho | 1 |
| Israel | 1 |
| Maryland | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lagos, Miguel; Elgueta, Milton; Molina, Mario I. – Physics Teacher, 2022
In this work, we study several closely related problems involving chains, conveyor belts, and rockets, which are described and solved without the application of infinitesimal calculus, or even the concept of mathematical limit. On one hand, the novelty lies not in the problems themselves, but in the method used for their solution, which brings…
Descriptors: Science Instruction, Physics, Problem Solving, Energy Conservation
Christopher Greer; Devon Eichfeld; Sara Sattarzadeh; Siu Ling Leung – Advances in Engineering Education, 2024
When engineering students are unable to evaluate the validity of their solutions, they are unprepared to solve complex, real-world engineering problems that require decomposition or knowledge transfer. A proper framework is key to successful implementation and can encourage more institutions to adopt problem-solving engineering labs. This paper…
Descriptors: Problem Solving, Engineering Education, Learning Laboratories, Scientific Concepts
Boncukçu, Gökçe; Gök, Gülsüm – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2023
A problem-based learning activity focusing on the human impact on the environment and the importance of sustainable development is presented. The activity revolves around a mysterious island where the civilization is on the blink of extinction, prompting students to investigate how human behavior, ecosystems, resources, and natural balance…
Descriptors: Problem Based Learning, Sustainability, Conservation (Environment), Environmental Education
Atkin, Keith – Physics Education, 2019
This paper shows how a freely downloadable and powerful software package, "SMath Studio," can be used to model physical systems in physics teaching. The software can form the basis of lecture demonstrations by teachers or can be used individually by students working in an educational environment or on their own home computers.
Descriptors: Physics, Science Instruction, Problem Solving, Scientific Concepts
Pendrill, Ann-Marie – Physics Education, 2020
Students often use incoherent strategies in their problem solving involving force and motion, as revealed, e.g. when they are asked to draw force diagrams for amusement rides involving circular motion, whether in horizontal or vertical planes. Depending on the questions asked, assignments involving circular motion can reveal different types of…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Geske, Matthew – Physics Teacher, 2019
Many introductory physics courses begin with the teaching of motion and kinematics. This naturally leads to the use of constant acceleration equations to solve various problems involving common motions (free fall being a notable example). Students can sometimes get the impression that these equations are the only thing they need to remember in…
Descriptors: Physics, Science Instruction, Scientific Concepts, Introductory Courses
Rodriguez, Shelly; Morrison, Alex; Benfield, Patrick – Science and Children, 2019
This article describes a lesson rooted in "tinkering," an approach to learning that encourages the use of authentic, hands-on experience to develop an understanding of content and physical materials. There were several desired outcomes for this lesson. First, the authors felt that tinkering was an appropriate approach to investigating…
Descriptors: Grade 3, Elementary School Science, Science Instruction, Physics
Cagle, Ethan C.; Totsch, Timothy R.; Erdmann, Mitzy A.; Gray, Gary M. – Journal of Chemical Education, 2018
[superscript 31]P{[superscript 1]H} nuclear magnetic resonance spectroscopy is a particularly useful tool for studying the reactions of P-donor ligands such as phosphines and phosphites with transition metals and other Lewis bases because the reactions take place on the nonbonding pair of electrons on the phosphorus. In addition, [superscript 31]P…
Descriptors: Inorganic Chemistry, Spectroscopy, Scientific Concepts, Science Laboratories
Joss, Lisa; Müller, Erich A. – Journal of Chemical Education, 2019
Recent advances in computer hardware and algorithms are spawning an explosive growth in the use of computer-based systems aimed at analyzing and ultimately correlating large amounts of experimental and synthetic data. As these machine learning tools become more widespread, it is becoming imperative that scientists and researchers become familiar…
Descriptors: Science Instruction, Science Laboratories, Chemical Engineering, Educational Technology
Eaton, Andrew C.; Delaney, Seamus; Schultz, Madeleine – Journal of Chemical Education, 2019
We report here a teacher action research project in which a Systems Thinking approach was implemented into a 15 h Depth Study for students in their final year of secondary chemistry. Students were introduced to the concept of Systems Thinking and the use of systems maps, along with the United Nations Global Goals for Sustainable Development…
Descriptors: Chemistry, Science Instruction, Systems Approach, Secondary School Science
Pérez-Álvarez, Leyre; Ruiz-Rubio, Leire; Vilas-Vilela, Jose Luis – Journal of Chemical Education, 2018
To enhance critical thinking and problem-solving skills, a project-based learning (PBL) approach for "Instrumental Techniques" courses in undergraduate physical chemistry was specifically developed for a pharmacy bachelor degree program. The starting point of this PBL was an open-ended question that is close to the student scientist's…
Descriptors: Science Instruction, Problem Solving, Critical Thinking, College Science
Masters, Heidi; Daggett, Kayden; Fonk, Amanda; Geiser, Anna; Hund, Jennifer; Kohlbeck, Kierra; Peterson, Amanda; Smith, Jackson; Zander, Zachary; Zaspel, Tyler – Science and Children, 2019
Severe flooding was prevalent within the authors' region at the beginning of the school year. Many homes and fields were affected by the amount of rain that fell within a short period of time over multiple days. Their students were concerned about the impact this natural phenomena was having on their local community. Natural phenomena can provide…
Descriptors: Problem Solving, Engineering Education, Scientific Concepts, Units of Study
Jacobs, Brendan; Clark, John Cripps – Teaching Science, 2018
As science teachers, we often show animations and videos in class but there is the potential for students to create their own animations to represent science concepts and thus make their conceptions visible for critique and refinement. This encourages students to be active in their own learning, creating animations rather than just viewing them.…
Descriptors: Science Instruction, Science Teachers, Scientific Concepts, Animation
Albarracín, Lluís; Gorgorió, Núria – Teaching Mathematics and Its Applications, 2015
Fermi problems are problems which, due to their difficulty, can be satisfactorily solved by being broken down into smaller pieces that are solved separately. In this article, we present different sequences of activities involving Fermi problems that can be carried out in Secondary School classes. The aim of these activities is to discuss…
Descriptors: Secondary School Mathematics, Mathematics Instruction, Mathematical Models, Mathematical Concepts
McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet – NSTA Press, 2017
If you've ever asked yourself whether problem-based learning (PBL) can bring new life to both your teaching and your students' learning, here's your answer: Yes. This all-in-one guide will help you engage your students in scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios will prompt K-12 students…
Descriptors: Problem Based Learning, Earth Science, Space Sciences, Astronomy

Peer reviewed
Direct link
