NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dunst, Carl J.; Hamby, Deborah W. – Journal of Intellectual & Developmental Disability, 2012
This paper includes a nontechnical description of methods for calculating effect sizes in intellectual and developmental disability studies. Different hypothetical studies are used to illustrate how null hypothesis significance testing (NHST) and effect size findings can result in quite different outcomes and therefore conflicting results. Whereas…
Descriptors: Intervals, Developmental Disabilities, Statistical Significance, Effect Size
Becker, Betsy Jane – 1987
The random variable p and its functions figure in several "tests of combined significance," meta-analysis summaries based on sample significance values, and ps have been used singly, as well as in other tests for evaluating the outcomes of individual research studies. In this work, asymptotic distributions of the sample one-sided…
Descriptors: Effect Size, Meta Analysis, Probability, Sample Size
Becker, Betsy Jane – 1984
Power is an indicator of the ability of a statistical analysis to detect a phenomenon that does in fact exist. The issue of power is crucial for social science research because sample size, effects, and relationships studied tend to be small and the power of a study relates directly to the size of the effect of interest and the sample size.…
Descriptors: Effect Size, Hypothesis Testing, Meta Analysis, Power (Statistics)
Neel, John H. – 1987
Determination of statistical power for analysis of variance procedures requires five elements: (1) significance level; (2) effect size; (3) number of means; (4) error variance; and (5) sample size. Significance levels are traditionally chosen to be 0.5, .01, or .001. Effect size is not discussed in this paper. The number of means is determined by…
Descriptors: Analysis of Variance, Error of Measurement, Mathematical Models, Power (Statistics)
Olejnik, Stephen; Algina, James – 1987
The purpose of this study was to develop a single procedure for comparing population variances which could be used for distribution forms. Bootstrap methodology was used to estimate the variability of the sample variance statistic when the population distribution was normal, platykurtic and leptokurtic. The data for the study were generated and…
Descriptors: Comparative Analysis, Estimation (Mathematics), Measurement Techniques, Monte Carlo Methods
Thompson, Bruce – 1987
This paper evaluates the logic underlying various criticisms of statistical significance testing and makes specific recommendations for scientific and editorial practice that might better increase the knowledge base. Reliance on the traditional hypothesis testing model has led to a major bias against nonsignificant results and to misinterpretation…
Descriptors: Analysis of Variance, Data Interpretation, Editors, Effect Size
Sandler, Andrew B. – 1987
Statistical significance is misused in educational and psychological research when it is applied as a method to establish the reliability of research results. Other techniques have been developed which can be correctly utilized to establish the generalizability of findings. Methods that do provide such estimates are known as invariance or…
Descriptors: Analysis of Covariance, Analysis of Variance, Correlation, Discriminant Analysis