NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Cohen, Donald – Mathematics and Computer Education, 1984
The focus is on how line graphs can be used to approximate solutions to rate problems and to suggest equations that offer exact algebraic solutions to the problem. Four problems requiring progressively greater graphing sophistication are presented plus four exercises. (MNS)
Descriptors: Algebra, College Mathematics, Graphs, Higher Education
Peer reviewed Peer reviewed
Frankenstein, Marilyn – Mathematics and Computer Education, 1984
Some misconceptions about learning are discussed and specific suggestions for helping students in a college developmental mathematics class learn how to learn mathematics are presented. Extensive footnotes are appended. (MNS)
Descriptors: College Mathematics, Higher Education, Learning Problems, Mathematics Anxiety
Peer reviewed Peer reviewed
Gibb, Allan A. – Mathematics and Computer Education, 1984
A brief overview is given of the part of meteorology which deals with the circulation of the atmosphere. This is followed by eight illustrative application problems for mathematics classes. (MNS)
Descriptors: College Mathematics, Higher Education, Mathematical Applications, Mathematics Instruction
Peer reviewed Peer reviewed
Jones, Kevin S. – Mathematics and Computer Education, 1992
"Gedankensimulation" is a term adapted from Einstein's "thought experiments" to indicate mentally created simulations that can help conceptualize ideas. Presents seven examples of simulations that can be utilized to solve problems or illustrate concepts in probability and statistics. Problem contexts include games of chance,…
Descriptors: College Mathematics, Computer Assisted Instruction, Computer Science Education, Computer Simulation
Peer reviewed Peer reviewed
Pomeranz, Janet Bellcourt – Mathematics and Computer Education, 1983
The problem "Given three planar points, find a point such that the sum of the distances from that point to the three points is a minimum" is discussed from several points of view. A solution that uses only calculus and geometry is examined in detail. (MNS)
Descriptors: Calculus, College Mathematics, Geometry, Higher Education
Peer reviewed Peer reviewed
Palmaccio, Richard J. – Mathematics and Computer Education, 1982
A method of using vector analysis is presented that is an application of calculus that helps to find the best angle for tacking a boat into the wind. While the discussion is theoretical, it is seen as a good illustration of mathematical investigation of a given situation. (MP)
Descriptors: Calculus, College Mathematics, Higher Education, Mathematical Applications
Peer reviewed Peer reviewed
Zlot, William – Mathematics and Computer Education, 1983
Finding a fractional number equal to an infinite decimal is solved by two usual methods. Then a third method is discussed that allows students to avoid having to confront the idea of an attained infinity of symbols. (MNS)
Descriptors: College Mathematics, Decimal Fractions, Fractions, Higher Education
Peer reviewed Peer reviewed
Simmonds, Gail – Mathematics and Computer Education, 1982
Results obtained from investigating number properties are discussed, along with six points that are felt, in general, to be the ingredients necessary for a successful learning experience. Two programs written in BASIC designed to aid in aspects of Number Theory are included. (MP)
Descriptors: College Mathematics, Computer Programs, Higher Education, Mathematics Instruction
Peer reviewed Peer reviewed
McKeough, William J. – Mathematics and Computer Education, 1983
A procedure using calculators is described to test Ulam's conjecture that all positive integers converge to 1, if subject to certain iterated transformations. (MNS)
Descriptors: Calculators, College Mathematics, Critical Thinking, Higher Education
Peer reviewed Peer reviewed
Ashbacher, Charles – Mathematics and Computer Education, 1991
Described is an experience in assigning mathematics problems that have been purposefully selected from professional journals to assist upper level college mathematics students in developing confidence in their ability to contribute published solutions. Several examples are included. (JJK)
Descriptors: College Mathematics, Computer Assisted Instruction, Higher Education, Mathematical Enrichment
Peer reviewed Peer reviewed
Maruszewski, Richard F., Jr. – Mathematics and Computer Education, 1987
Timing stoplights and trying to determine the best way to allocate cycle time to the two directions is discussed. The simple case and improving the model are both considered. (MNS)
Descriptors: Calculus, College Mathematics, Higher Education, Learning Activities
Peer reviewed Peer reviewed
Johnson, Marvin L. – Mathematics and Computer Education, 1991
Under the assumption that the current perplexing state of calculus instruction is a result of the presuppositions inherent within conventional teaching practices, the author examines why calculus is taught the way it is, indicates unprofitable practices that result from the way calculus is taught, and recommends possible ameliorative actions. (JJK)
Descriptors: Calculus, College Mathematics, Curriculum Development, Curriculum Problems
Peer reviewed Peer reviewed
Meyer, Rochelle Wilson – Mathematics and Computer Education, 1982
A possible logical flaw based on similar triangles is discussed with the Sherlock Holmes mystery, "The Muskgrave Ritual." The possible flaw has to do with the need for two trees to have equal growth rates over a 250-year period in order for the solution presented to work. (MP)
Descriptors: College Mathematics, Geometric Concepts, Geometry, Higher Education
Peer reviewed Peer reviewed
Becker, Leigh C. – Mathematics and Computer Education, 1984
Two topics are discussed that can be presented in a discussion of the annual percentage rate (APR): difference equations and fixed-point iteration. A program in BASIC using the iteration procedure is included. (MNS)
Descriptors: Business Skills, College Mathematics, Computer Software, Equations (Mathematics)
Peer reviewed Peer reviewed
Stinebrickner, Ralph – Mathematics and Computer Education, 1983
How a computer randomly generates numbers to turn off lighted blocks on a graphics display is discussed. A computer program is given after reviewing a definition and two theorems and applying them to the problem. (MNS)
Descriptors: College Mathematics, Computer Graphics, Computer Programs, Geometric Concepts
Previous Page | Next Page ยป
Pages: 1  |  2