NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)7
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Casabianca, Jodi M.; Lewis, Charles – Journal of Educational and Behavioral Statistics, 2015
Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…
Descriptors: Item Response Theory, Maximum Likelihood Statistics, Computation, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Peer reviewed Peer reviewed
Direct linkDirect link
Rutkowski, Leslie – Applied Measurement in Education, 2014
Large-scale assessment programs such as the National Assessment of Educational Progress (NAEP), Trends in International Mathematics and Science Study (TIMSS), and Programme for International Student Assessment (PISA) use a sophisticated assessment administration design called matrix sampling that minimizes the testing burden on individual…
Descriptors: Measurement, Testing, Item Sampling, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao – Educational and Psychological Measurement, 2013
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Descriptors: Item Response Theory, Computation, Matrices, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Scheerens, Jaap; Luyten, Hans; van den Berg, Stéphanie M.; Glas, Cees A. W. – Educational Research and Evaluation, 2015
As expectations of the economic impact of educational attainment are soaring (Hanushek & Woessmann, 2009) and conjectures about successful national educational reforms (Mourshed, Chijioke, & Barber, 2010) are welcomed by educational policy-makers in many countries, a careful assessment of the empirical evidence for these kinds of claims is…
Descriptors: Foreign Countries, Educational Attainment, Educational Change, Comparative Education
Peer reviewed Peer reviewed
Direct linkDirect link
Micklewright, John; Schnepf, Sylke V.; Silva, Pedro N. – Economics of Education Review, 2012
Investigation of peer effects on achievement with sample survey data on schools may mean that only a random sample of the population of peers is observed for each individual. This generates measurement error in peer variables similar in form to the textbook case of errors-in-variables, resulting in the estimated peer group effects in an OLS…
Descriptors: Foreign Countries, Sampling, Error of Measurement, Peer Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Furno, Marilena – Journal of Educational and Behavioral Statistics, 2011
The article considers a test of specification for quantile regressions. The test relies on the increase of the objective function and the worsening of the fit when unnecessary constraints are imposed. It compares the objective functions of restricted and unrestricted models and, in its different formulations, it verifies (a) forecast ability, (b)…
Descriptors: Goodness of Fit, Statistical Inference, Regression (Statistics), Least Squares Statistics