NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…11
Law School Admission Test1
MacArthur Communicative…1
Trends in International…1
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Jing; Wang, Chun – Journal of Educational Measurement, 2020
Item nonresponses are prevalent in standardized testing. They happen either when students fail to reach the end of a test due to a time limit or quitting, or when students choose to omit some items strategically. Oftentimes, item nonresponses are nonrandom, and hence, the missing data mechanism needs to be properly modeled. In this paper, we…
Descriptors: Item Response Theory, Test Items, Standardized Tests, Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Sachse, Karoline A.; Mahler, Nicole; Pohl, Steffi – Educational and Psychological Measurement, 2019
Mechanisms causing item nonresponses in large-scale assessments are often said to be nonignorable. Parameter estimates can be biased if nonignorable missing data mechanisms are not adequately modeled. In trend analyses, it is plausible for the missing data mechanism and the percentage of missing values to change over time. In this article, we…
Descriptors: International Assessment, Response Style (Tests), Achievement Tests, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
O'Keeffe, Cormac – E-Learning and Digital Media, 2017
International Large Scale Assessments have been producing data about educational attainment for over 60 years. More recently however, these assessments as tests have become digitally and computationally complex and increasingly rely on the calculative work performed by algorithms. In this article I first consider the coordination of relations…
Descriptors: Achievement Tests, Foreign Countries, Secondary School Students, International Assessment
Casabianca, Jodi M.; Lewis, Charles – Journal of Educational and Behavioral Statistics, 2015
Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…
Descriptors: Item Response Theory, Maximum Likelihood Statistics, Computation, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Rutkowski, Leslie; Rutkowski, David; Zhou, Yan – International Journal of Testing, 2016
Using an empirically-based simulation study, we show that typically used methods of choosing an item calibration sample have significant impacts on achievement bias and system rankings. We examine whether recent PISA accommodations, especially for lower performing participants, can mitigate some of this bias. Our findings indicate that standard…
Descriptors: Simulation, International Programs, Adolescents, Student Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu – Educational and Psychological Measurement, 2015
Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…
Descriptors: Item Response Theory, Test Format, Language Usage, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao – Educational and Psychological Measurement, 2013
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Descriptors: Item Response Theory, Computation, Matrices, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Cai, Li; Yang, Ji Seung; Hansen, Mark – Psychological Methods, 2011
Full-information item bifactor analysis is an important statistical method in psychological and educational measurement. Current methods are limited to single-group analysis and inflexible in the types of item response models supported. We propose a flexible multiple-group item bifactor analysis framework that supports a variety of…
Descriptors: Item Analysis, Item Response Theory, Factor Analysis, Maximum Likelihood Statistics
Rose, Norman; von Davier, Matthias; Xu, Xueli – Educational Testing Service, 2010
Large-scale educational surveys are low-stakes assessments of educational outcomes conducted using nationally representative samples. In these surveys, students do not receive individual scores, and the outcome of the assessment is inconsequential for respondents. The low-stakes nature of these surveys, as well as variations in average performance…
Descriptors: Item Response Theory, Educational Assessment, Data Analysis, Case Studies