NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mangino, Anthony A.; Bolin, Jocelyn H.; Finch, W. Holmes – Educational and Psychological Measurement, 2023
This study seeks to compare fixed and mixed effects models for the purposes of predictive classification in the presence of multilevel data. The first part of the study utilizes a Monte Carlo simulation to compare fixed and mixed effects logistic regression and random forests. An applied examination of the prediction of student retention in the…
Descriptors: Prediction, Classification, Monte Carlo Methods, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aksu, Gökhan; Güzeller, Cem Oktay; Eser, Mehmet Taha – International Journal of Assessment Tools in Education, 2019
In this study, it was aimed to compare different normalization methods employed in model developing process via artificial neural networks with different sample sizes. As part of comparison of normalization methods, input variables were set as: work discipline, environmental awareness, instrumental motivation, science self-efficacy, and weekly…
Descriptors: Sample Size, Artificial Intelligence, Classification, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Abulela, Mohammed A. A.; Rios, Joseph A. – Applied Measurement in Education, 2022
When there are no personal consequences associated with test performance for examinees, rapid guessing (RG) is a concern and can differ between subgroups. To date, the impact of differential RG on item-level measurement invariance has received minimal attention. To that end, a simulation study was conducted to examine the robustness of the…
Descriptors: Comparative Analysis, Robustness (Statistics), Nonparametric Statistics, Item Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Toprak, Emre; Gelbal, Selahattin – International Journal of Assessment Tools in Education, 2020
This study aims to compare the performances of the artificial neural network, decision trees and discriminant analysis methods to classify student achievement. The study uses multilayer perceptron model to form the artificial neural network model, chi-square automatic interaction detection (CHAID) algorithm to apply the decision trees method and…
Descriptors: Comparative Analysis, Classification, Artificial Intelligence, Networks