Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 4 |
Descriptor
Computation | 4 |
Longitudinal Studies | 3 |
Children | 2 |
Data Analysis | 2 |
Elementary School Students | 2 |
Error of Measurement | 2 |
Grade 5 | 2 |
Surveys | 2 |
Bayesian Statistics | 1 |
Class Size | 1 |
Coding | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Descriptive | 4 |
Education Level
Elementary Education | 2 |
Grade 5 | 2 |
Intermediate Grades | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 4 |
What Works Clearinghouse Rating
von Hippel, Paul T. – Sociological Methods & Research, 2020
When using multiple imputation, users often want to know how many imputations they need. An old answer is that 2-10 imputations usually suffice, but this recommendation only addresses the efficiency of point estimates. You may need more imputations if, in addition to efficient point estimates, you also want standard error (SE) estimates that would…
Descriptors: Computation, Error of Measurement, Data Analysis, Children
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Peugh, James L. – Journal of Early Adolescence, 2014
Applied early adolescent researchers often sample students (Level 1) from within classrooms (Level 2) that are nested within schools (Level 3), resulting in data that requires multilevel modeling analysis to avoid Type 1 errors. Although several articles have been published to assist researchers with analyzing sample data nested at two levels, few…
Descriptors: Early Adolescents, Research, Hierarchical Linear Modeling, Data Analysis
Chen, Fang; Chalhoub-Deville, Micheline – Language Testing, 2014
Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…
Descriptors: Regression (Statistics), Language Tests, Language Proficiency, Mathematics Achievement