NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 466 to 480 of 75,176 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ana Stojanov; Ben Kei Daniel – Education and Information Technologies, 2024
The need for data-driven decision-making primarily motivates interest in analysing Big Data in higher education. Although there has been considerable research on the value of Big Data in higher education, its application to address critical issues within the sector is still limited. This systematic review, conducted in December 2021 and…
Descriptors: Higher Education, Learning Analytics, Well Being, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Federica Picasso; Javiera Atenas; Leo Havemann; Anna Serbati – Open Praxis, 2024
The development of critical data and artificial intelligence (AI) literacy has become a key focus in current discussions in Higher Education, thus it is necessary to develop and advance capacity building, reflectiveness and awareness across disciplines to critically address the possibilities and challenges presented by data and AI. In this paper,…
Descriptors: Undergraduate Students, College Faculty, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Prasoon Patidar; Tricia J. Ngoon; Neeharika Vogety; Nikhil Behari; Chris Harrison; John Zimmerman; Amy Ogan; Yuvraj Agarwal – Journal of Learning Analytics, 2024
Classroom sensing systems can capture data on teacher-student behaviours and interactions at a scale far greater than human observers can. These data, translated to multi-modal analytics, can provide meaningful insights to educational stakeholders. However, complex data can be difficult to make sense of. In addition, analyses done on these data…
Descriptors: Learning Analytics, Classroom Observation Techniques, Data Analysis, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Jingjing Long; Jiaxin Lin – Education and Information Technologies, 2024
English language learning students in China often feel challenged to learn English due to lack of motivation and confidence, pronunciation and grammar difference, lack of practice and people to communicate with etc., which affects students mental health. Adopting Big data and AI will help in overcoming these limitations as it provides personalized…
Descriptors: Foreign Countries, English Language Learners, College Students, Mental Health
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gizem Canbulat; Salih Uzun – Turkish Journal of Education, 2024
This research aimed to determine the trends related to blended learning studies conducted in science education through descriptive content analysis. This study was performed using the document review method. For this purpose, 120 studies on blended learning in science education were determined between 2005 and 2022 in the Web of Science (WoS)…
Descriptors: Blended Learning, Educational Research, Science Education, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marianthi Grizioti; Chronis Kynigos – Informatics in Education, 2024
Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying…
Descriptors: Computation, Thinking Skills, Data Science, Classification
LuAnna Bellairs Salemi – ProQuest LLC, 2024
A problem exists in NC Montessori schools with effective data analysis for specific learning disabilities (SLD) placement. The purpose of this study was to identify administrators' and teachers' perceptions of data collection and analysis within multitiered systems of support (MTSS) in a Montessori school. Fixsen's implementation science theory…
Descriptors: Data Collection, Data Analysis, Multi Tiered Systems of Support, Public Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Tianyu Ma; Jennifer Beth Kahn; Lisa Aileen Hardy; Sarah C. Radke – AERA Online Paper Repository, 2024
This paper reports on systematic literature review that examined learning theories and data collection and analysis methods used to study game-based learning in research on educational digital games for K-12 populations. Through electronic database, hand, and ancestral searches, we identified 25 empirical studies (29 educational games) published…
Descriptors: Data Collection, Data Analysis, Elementary Secondary Education, Educational Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Gould, Robert – Teaching Statistics: An International Journal for Teachers, 2021
The growth of the data culture has led to calls for improving data literacy among primary and secondary students and their teachers. One approach to improving data literacy is to teach a course devoted to data science but, given the lack of consensus over the term "data science," just what should an introductory data science course…
Descriptors: Data, Data Analysis, Thinking Skills, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Yongseok Lee; Walter L. Leite; Audrey J. Leroux – Journal of Experimental Education, 2024
In the current study, we compare propensity score (PS) matching methods for data with a cross-classified structure, where each individual is clustered within more than one group, but the groups are not hierarchically organized. Through a Monte Carlo simulation study, we compared sequential cluster matching (SCM), preferential within cluster…
Descriptors: Comparative Analysis, Data Analysis, Groups, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Chen Qiu; Michael R. Peabody; Kelly D. Bradley – Measurement: Interdisciplinary Research and Perspectives, 2024
It is meaningful to create a comprehensive score to extract information from mass continuous data when they measure the same latent concept. Therefore, this study adopts the logic of psychometrics to conduct scales on continuous data under the Rasch models. This study also explores the effect of different data discretization methods on scale…
Descriptors: Models, Measurement Techniques, Benchmarking, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Chenxi Jiang; Zhenzhong Chen; Jeremy M. Wolfe – Cognitive Research: Principles and Implications, 2024
Previous work has demonstrated similarities and differences between aerial and terrestrial image viewing. Aerial scene categorization, a pivotal visual processing task for gathering geoinformation, heavily depends on rotation-invariant information. Aerial image-centered research has revealed effects of low-level features on performance of various…
Descriptors: Geography, Photography, Classification, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Hans-Peter Piepho; Laurence V. Madden; Emlyn R. Williams – Research Synthesis Methods, 2024
Methods of network meta-analysis (NMA) can be classified as arm-based and contrast-based approaches. There are several arm-based approaches, and some of these have been criticized because they recover inter-study information and hence do not obey the principle of concurrent control. Here, we point out that recovery of inter-study information in…
Descriptors: Meta Analysis, Models, Methods, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Zara Ersozlu; Sona Taheri; Inge Koch – Education and Information Technologies, 2024
Integrating machine learning (ML) methods in educational research has the potential to greatly impact upon research, teaching, learning and assessment by enabling personalised learning, adaptive assessment and providing insights into student performance, progress and learning patterns. To reveal more about this notion, we investigated ML…
Descriptors: Artificial Intelligence, Educational Research, Data Analysis, Methods
Pages: 1  |  ...  |  28  |  29  |  30  |  31  |  32  |  33  |  34  |  35  |  36  |  ...  |  5012