Publication Date
| In 2026 | 0 |
| Since 2025 | 17 |
| Since 2022 (last 5 years) | 131 |
| Since 2017 (last 10 years) | 215 |
| Since 2007 (last 20 years) | 218 |
Descriptor
| Learning Analytics | 218 |
| Prediction | 218 |
| Models | 77 |
| Artificial Intelligence | 64 |
| Academic Achievement | 59 |
| Foreign Countries | 47 |
| Accuracy | 42 |
| Algorithms | 37 |
| At Risk Students | 37 |
| College Students | 33 |
| Learning Processes | 33 |
| More ▼ | |
Source
Author
| Xia, Xiaona | 4 |
| Xing, Wanli | 4 |
| Amisha Jindal | 3 |
| Ashish Gurung | 3 |
| Baker, Ryan S. | 3 |
| Boroowa, Avinash | 3 |
| Botelho, Anthony F. | 3 |
| Erin Ottmar | 3 |
| Herodotou, Christothea | 3 |
| Hlosta, Martin | 3 |
| Ji-Eun Lee | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
Location
| Australia | 6 |
| China | 5 |
| Germany | 4 |
| South Korea | 3 |
| United Kingdom | 3 |
| Brazil | 2 |
| Finland | 2 |
| France | 2 |
| Massachusetts (Boston) | 2 |
| Morocco | 2 |
| Taiwan | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Jinnie Shin; Bowen Wang; Wallace N. Pinto Junior; Mark J. Gierl – Large-scale Assessments in Education, 2024
The benefits of incorporating process information in a large-scale assessment with the complex micro-level evidence from the examinees (i.e., process log data) are well documented in the research across large-scale assessments and learning analytics. This study introduces a deep-learning-based approach to predictive modeling of the examinee's…
Descriptors: Prediction, Models, Problem Solving, Performance
Khalid Alalawi; Rukshan Athauda; Raymond Chiong; Ian Renner – Education and Information Technologies, 2025
Learning analytics intervention (LAI) studies aim to identify at-risk students early during an academic term using predictive models and facilitate educators to provide effective interventions to improve educational outcomes. A major impediment to the uptake of LAI is the lack of access to LAI infrastructure by educators to pilot LAI, which…
Descriptors: Intervention, Learning Analytics, Guidelines, Prediction
El Aouifi, Houssam; El Hajji, Mohamed; Es-Saady, Youssef; Douzi, Hassan – Education and Information Technologies, 2021
This paper analyzes how learners interact with the pedagogical sequences of educational videos, and its effect on their performance. In this study, the suggested video courses are segmented on several pedagogical sequences. In fact, we're not focusing on the type of clicks made by learners, but we're concentrating on the pedagogical sequences in…
Descriptors: Video Technology, Student Behavior, Prediction, Learning Analytics
Ionita, Remus Florentin; Dascalu, Mihai; Corlatescu, Dragos-Georgian; McNamara, Danielle S – Grantee Submission, 2021
Exploring new or emerging research domains or subdomains can become overwhelming due to the magnitude of available resources and the high speed at which articles are published. As such, a tool that curates the information and underlines central entities, both authors and articles from a given research context, is highly desirable. Starting from…
Descriptors: Prediction, Learning Analytics, Authors, Network Analysis
Caspari-Sadeghi, Sima – Cogent Education, 2023
Data-driven decision-making and data-intensive research are becoming prevalent in many sectors of modern society, i.e. healthcare, politics, business, and entertainment. During the COVID-19 pandemic, huge amounts of educational data and new types of evidence were generated through various online platforms, digital tools, and communication…
Descriptors: Learning Analytics, Data Analysis, Higher Education, Feedback (Response)
Deho, Oscar Blessed; Joksimovic, Srecko; Li, Jiuyong; Zhan, Chen; Liu, Jixue; Liu, Lin – IEEE Transactions on Learning Technologies, 2023
Many educational institutions are using predictive models to leverage actionable insights using student data and drive student success. A common task has been predicting students at risk of dropping out for the necessary interventions to be made. However, issues of discrimination by these predictive models based on protected attributes of students…
Descriptors: Learning Analytics, Models, Student Records, Prediction
Yamauchi, Taisei; Flanagan, Brendan; Nakamoto, Ryosuke; Dai, Yiling; Takami, Kyosuke; Ogata, Hiroaki – Smart Learning Environments, 2023
In recent years, smart learning environments have become central to modern education and support students and instructors through tools based on prediction and recommendation models. These methods often use learning material metadata, such as the knowledge contained in an exercise which is usually labeled by domain experts and is costly and…
Descriptors: Mathematics Instruction, Classification, Algorithms, Barriers
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence
Xavier Ochoa; Xiaomeng Huang; Yuli Shao – Journal of Learning Analytics, 2025
Generative AI (GenAI) has the potential to revolutionize the analysis of educational data, significantly impacting learning analytics (LA). This study explores the capability of non-experts, including administrators, instructors, and students, to effectively use GenAI for descriptive LA tasks without requiring specialized knowledge in data…
Descriptors: Learning Analytics, Artificial Intelligence, Computer Software, Scores
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Deho, Oscar Blessed; Zhan, Chen; Li, Jiuyong; Liu, Jixue; Liu, Lin; Duy Le, Thuc – British Journal of Educational Technology, 2022
With the widespread use of learning analytics (LA), ethical concerns about fairness have been raised. Research shows that LA models may be biased against students of certain demographic subgroups. Although fairness has gained significant attention in the broader machine learning (ML) community in the last decade, it is only recently that attention…
Descriptors: Ethics, Learning Analytics, Social Bias, Computer Software
Sheikh, Riyaz Abdullah; Bhatia, Surbhi; Metre, Sujit Gajananrao; Faqihi, Ali Yahya A. – Journal of Applied Research in Higher Education, 2022
Purpose: In spite of the popularity of learning analytics (LA) in higher education institutions (HEIs), the success rate and value gained through LA projects is still little and unclear. The existing research on LA focusses more on tactical capabilities rather than its effect on organizational value. The key questions are what are the expected…
Descriptors: Learning Analytics, Higher Education, Prediction, Information Technology
Tong, Yao; Zhan, Zehui – Interactive Technology and Smart Education, 2023
Purpose: The purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners' online learning behaviors, and comparing three algorithms -- multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).…
Descriptors: MOOCs, Online Courses, Learning Analytics, Prediction
Mubarak, Ahmed Ali; Cao, Han; Ahmed, Salah A. M. – Education and Information Technologies, 2021
Analysis of learning behavior of MOOC enthusiasts has become a posed challenge in the Learning Analytics field, which is especially related to video lecture data, since most learners watch the same online lecture videos. It helps to conduct a comprehensive analysis of such behaviors and explore various learning patterns for learners and predict…
Descriptors: Learning Analytics, Online Courses, Video Technology, Artificial Intelligence

Peer reviewed
Direct link
