NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)2
Since 2007 (last 20 years)10
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Klingler, Severin; Wampfler, Rafael; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2017
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high volumes from intelligent tutoring systems and massive open online courses. In this paper, we…
Descriptors: Classification, Artificial Intelligence, Networks, Learning Disabilities
Snow, Erica L. – International Educational Data Mining Society, 2015
Intelligent tutoring systems are adaptive learning environments designed to support individualized instruction. The adaptation embedded within these systems is often guided by user models that represent one or more aspects of students' domain knowledge, actions, or performance. The proposed project focuses on the development and testing of user…
Descriptors: Intelligent Tutoring Systems, Models, Individualized Instruction, Needs Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Peer reviewed Peer reviewed
Direct linkDirect link
Boyer, Kristy Elizabeth; Phillips, Robert; Ingram, Amy; Ha, Eun Young; Wallis, Michael; Vouk, Mladen; Lester, James – International Journal of Artificial Intelligence in Education, 2011
Identifying effective tutorial dialogue strategies is a key issue for intelligent tutoring systems research. Human-human tutoring offers a valuable model for identifying effective tutorial strategies, but extracting them is a challenge because of the richness of human dialogue. This article addresses that challenge through a machine learning…
Descriptors: Markov Processes, Intelligent Tutoring Systems, Tutoring, Program Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Barnes, Tiffany; Stamper, John – Educational Technology & Society, 2010
In building intelligent tutoring systems, it is critical to be able to understand and diagnose student responses in interactive problem solving. However, building this understanding into a computer-based intelligent tutor is a time-intensive process usually conducted by subject experts. Much of this time is spent in building production rules that…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Tutors, Probability
Stamper, John Carroll – ProQuest LLC, 2010
Intelligent Tutoring Systems (ITSs) that adapt to an individual student's needs have shown significant improvement in achievement over non-adaptive instruction (Murray 1999). This improvement occurs due to the individualized instruction and feedback that an ITS provides. In order to achieve the benefits that ITSs provide, we must find a way to…
Descriptors: Intelligent Tutoring Systems, Individualized Instruction, Adjustment (to Environment), Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Kommers, Piet, Ed.; Issa, Tomayess, Ed.; Issa, Theodora, Ed.; McKay, Elspeth, Ed.; Isias, Pedro, Ed. – International Association for Development of the Information Society, 2016
These proceedings contain the papers and posters of the International Conferences on Internet Technologies & Society (ITS 2016), Educational Technologies (ICEduTech 2016) and Sustainability, Technology and Education (STE 2016), which have been organised by the International Association for Development of the Information Society and…
Descriptors: Conferences (Gatherings), Foreign Countries, Internet, Educational Technology
Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John – International Working Group on Educational Data Mining, 2011
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…
Descriptors: Academic Achievement, Logical Thinking, Profiles, Tutoring
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection