NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Assessments and Surveys
Preliminary Scholastic…1
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 54 results Save | Export
Nancy Montes; Fernanda Luna – UNESCO International Institute for Educational Planning, 2024
This article characterizes and reflects on the possible uses of early warning systems (hereafter, EWS) in the region as effective tools to support educational pathways, whenever they identify risks of dropout, difficulties for the achievement of substantive learning, and the possibility of organizing specific actions. This article was developed in…
Descriptors: Data Collection, Data Use, At Risk Students, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Ferdinand Valentin Stoye; Claudia Tschammler; Oliver Kuss; Annika Hoyer – Research Synthesis Methods, 2024
The development of new statistical models for the meta-analysis of diagnostic test accuracy studies is still an ongoing field of research, especially with respect to summary receiver operating characteristic (ROC) curves. In the recently published updated version of the "Cochrane Handbook for Systematic Reviews of Diagnostic Test…
Descriptors: Diagnostic Tests, Accuracy, Barriers, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Maes, Bea; Nijs, Sara; Vandesande, Sien; Van keer, Ines; Arthur-Kelly, Michael; Dind, Juliane; Goldbart, Juliet; Petitpierre, Geneviève; Van der Putten, Annette – Journal of Applied Research in Intellectual Disabilities, 2021
Background: Within the context of the Special Interest Research Group (SIRG) on Persons with Profound Intellectual and Multiple Disabilities (PIMD), researchers often discuss the methodological problems and challenges they are confronted with. The aim of the current article was to give an overview of these challenges. Methods: The challenges are…
Descriptors: Severe Intellectual Disability, Multiple Disabilities, Research Methodology, Barriers
Peer reviewed Peer reviewed
Direct linkDirect link
Achter, Sebastian; Borit, Melania; Chattoe-Brown, Edmund; Siebers, Peer-Olaf – International Journal of Social Research Methodology, 2022
This article describes and justifies a reporting standard to improve data use documentation in Agent-Based Modelling. Following the development of reporting standards for models themselves, empirical modelling has now developed to the point where these standards need to take equally effective account of data use (which previously has tended to be…
Descriptors: Data Use, Data Analysis, Models, Usability
Peer reviewed Peer reviewed
Direct linkDirect link
Remiro-Azócar, Antonio; Heath, Anna; Baio, Gianluca – Research Synthesis Methods, 2023
We examine four important considerations in the development of covariate adjustment methodologies for indirect treatment comparisons. First, we consider potential advantages of weighting versus outcome modeling, placing focus on bias-robustness. Second, we outline why model-based extrapolation may be required and useful, in the specific context of…
Descriptors: Medical Research, Outcomes of Treatment, Comparative Analysis, Barriers
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Kai; Tatinati, Sivanagaraja; Khong, Andy W. H. – IEEE Transactions on Learning Technologies, 2020
Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are…
Descriptors: Context Effect, Models, Learning Analytics, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sabaityte, Jolanta; Davidaviciene, Vida; Karpoviciute, Roberta – World Journal on Educational Technology: Current Issues, 2020
For a competitive organisation, it is important to invest in employee's education to keep their knowledge up to date and ensure continuous growth in terms of employees' competence and skills. Continuous learning is considered as one of the success factors for the organisation, since this ensures constant growth of employees' competence that…
Descriptors: Data Analysis, Data Collection, Professional Continuing Education, Competence
Peer reviewed Peer reviewed
Direct linkDirect link
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Jin – Journal of Educational and Behavioral Statistics, 2022
Longitudinal data analysis has been widely employed to examine between-individual differences in within-individual changes. One challenge of such analyses is that the rate-of-change is only available indirectly when change patterns are nonlinear with respect to time. Latent change score models (LCSMs), which can be employed to investigate the…
Descriptors: Longitudinal Studies, Individual Differences, Scores, Models
Averi Pakulis; Nadia Gronkowski – First Focus on Children, 2024
Home visiting connects expectant parents, new caregivers, and their young children with a support person, called a home visitor. The home visitor meets regularly with the family, develops a relationship with them, and supports them to achieve their goals and meet their needs. To reach the thousands of additional families who could benefit from…
Descriptors: Community Programs, Home Programs, Models, Language Usage
Jun Kataoka – ProQuest LLC, 2024
This dissertation proposes novel Domain Adaptation (DA) methods in real-world industrial settings, where the availability of labeled data is limited and test data can significantly differ from training data. Particularly, our research addresses key challenges in DA, including the applicability of DA methods in industrial settings, strategies to…
Descriptors: Industry, Authentic Learning, Data, Training Methods
Cai, Zhiqiang; Siebert-Evenstone, Amanda; Eagan, Brendan; Shaffer, David Williamson – Grantee Submission, 2021
When text datasets are very large, manually coding line by line becomes impractical. As a result, researchers sometimes try to use machine learning algorithms to automatically code text data. One of the most popular algorithms is topic modeling. For a given text dataset, a topic model provides probability distributions of words for a set of…
Descriptors: Coding, Artificial Intelligence, Models, Probability
Corbeil, Maria Elena; Corbeil, Joseph Rene; Khan, Badrul H. – Educational Technology, 2017
Due to rapid advancements in our ability to collect, process, and analyze massive amounts of data, it is now possible for educational institutions to gain new insights into how people learn (Kumar, 2013). E-learning has become an important part of education, and this form of learning is especially suited to the use of big data and data analysis,…
Descriptors: Program Implementation, Electronic Learning, Educational Technology, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Emily K. Toutkoushian; Kihyun Ryoo – Measurement: Interdisciplinary Research and Perspectives, 2024
The Next Generation Science Standards (NGSS) delineate three interrelated dimensions that describe what students should know and how they should engage in science learning. These present significant challenges for assessment because traditional assessments may not be able to capture the ways in which students engage with content. Science…
Descriptors: Middle School Students, Academic Standards, Science Education, Learner Engagement
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4