NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 91 to 105 of 255 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tetzlaff, Leonard; Schmiedek, Florian; Brod, Garvin – Educational Psychology Review, 2021
Personalized education--the systematic adaptation of instruction to individual learners--has been a long-striven goal. We review research on personalized education that has been conducted in the laboratory, in the classroom, and in digital learning environments. Across all learning environments, we find that personalization is most successful when…
Descriptors: Individualized Instruction, Instructional Effectiveness, Instructional Design, Student Characteristics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsutsumi, Emiko; Kinoshita, Ryo; Ueno, Maomi – International Educational Data Mining Society, 2021
Knowledge tracing (KT), the task of tracking the knowledge state of each student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines Item Response Theory (IRT) with a deep learning model, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Ian Hardy; Vicente Reyes; Louise G. Phillips; M. Obaidul Hamid – Journal of Education Policy, 2024
Data infrastructures exist in a variety of formats. This article draws on the insights of senior personnel involved in developing a new data dashboard in one state jurisdiction in Australia. While literature on dashboards often focuses on the teachers and learners influenced by them, there is less attention to those involved in their development…
Descriptors: Learning Analytics, Learning Processes, Learning Management Systems, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Héctor J. Pijeira-Díaz; Shashank Subramanya; Janneke van de Pol; Anique de Bruin – Journal of Computer Assisted Learning, 2024
Background: When learning causal relations, completing causal diagrams enhances students' comprehension judgements to some extent. To potentially boost this effect, advances in natural language processing (NLP) enable real-time formative feedback based on the automated assessment of students' diagrams, which can involve the correctness of both the…
Descriptors: Learning Analytics, Automation, Student Evaluation, Causal Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Siew, Cynthia S. Q. – Journal of Learning Analytics, 2022
This commentary discusses how research approaches from Cognitive Network Science can be of relevance to research in the field of Learning Analytics, with a focus on modelling the knowledge representations of learners and students as a network of interrelated concepts. After providing a brief overview of research in Cognitive Network Science, I…
Descriptors: Network Analysis, Learning Analytics, Cognitive Processes, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Pangrazio, Luci; Stornaiuolo, Amy; Nichols, T. Philip; Garcia, Antero; Philip, Thomas M. – Harvard Educational Review, 2022
In this contribution to the Platform Studies in Education symposium, Luci Pangrazio, Amy Stornaiuolo, T. Philip Nichols, Antero Garcia, and Thomas M. Philip explore how digital platforms can be used to build knowledge and understanding of datafication processes among teachers and students. The essay responds to the turn toward data-driven teaching…
Descriptors: Teaching Methods, Learning Analytics, Vignettes, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Gungadeen, Anuradha; Rajnee, Lobind – International Journal on E-Learning, 2023
With the current shift in educational settings to blended and flipped classroom and the introduction of learning management systems (LMS) such as Moodle, it is no surprise big data has found its place in education and is predicted to be extensively implemented in institutions of higher education (Johnson et al., 2013). In a flipped classroom…
Descriptors: Learning Analytics, Teacher Student Relationship, Peer Relationship, Interaction
Kirk P. Vanacore; Ji-Eun Lee; Alena Egorova; Erin Ottmar – Grantee Submission, 2023
To meet the goal of understanding students' complex learning processes and maximizing their learning outcomes, the field of learning analytics delves into the myriad of data captured as students use computer assisted learning platforms. Although many platforms associated with learning analytics focus on students' performance, performance on…
Descriptors: Learning Analytics, Outcomes of Education, Problem Solving, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Knobbout, Justian; van der Stappen, Esther – IEEE Transactions on Learning Technologies, 2020
Learning technologies enable interventions in the learning process aiming to improve learning. Learning analytics provides such interventions based on analysis of learner data, which are believed to have beneficial effects on both learning and the learning environment. Literature reporting on the effects of learning analytics interventions on…
Descriptors: Learning Analytics, Intervention, Educational Research, Outcomes of Education
Peer reviewed Peer reviewed
Direct linkDirect link
Kent, Carmel; Rechavi, Amit – International Journal of Research & Method in Education, 2020
Educational research suggests that interactivity is one of the most important tools for learning. This paper analyses the learning process in online communities by examining three types of interactions among learners: (1) interactions involving the active contribution of content ('digitally speaking'); (2) interactions involving the consumption of…
Descriptors: Electronic Learning, Interaction, Network Analysis, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Xiuyu Lin; Zehui Zhan; Xuebo Zhang; Jiayi Xiong – IEEE Transactions on Learning Technologies, 2024
The attribution of learning success or failure is crucial for students' learning and motivation. Effective attribution of their learning success or failure in the context of a small private online course (SPOC) could generate students' motivation toward learning success while an incorrect attribution would lead to a sense of helplessness. Based on…
Descriptors: Learning Analytics, Learning Processes, Learning Motivation, Attribution Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mohd Fazil; Angelica Rísquez; Claire Halpin – Journal of Learning Analytics, 2024
Technology-enhanced learning supported by virtual learning environments (VLEs) facilitates tutors and students. VLE platforms contain a wealth of information that can be used to mine insight regarding students' learning behaviour and relationships between behaviour and academic performance, as well as to model data-driven decision-making. This…
Descriptors: Learning Analytics, Learning Management Systems, Learning Processes, Decision Making
Yipu Zheng – ProQuest LLC, 2024
This dissertation investigates how collective process-oriented documentation tools, combined with Natural Language Processing (NLP) techniques, can enhance knowledge construction in hands-on, open-ended learning environments, such as makerspaces. Through a three-year design-based research, the study developed and tested a collective documentation…
Descriptors: Shared Resources and Services, Open Education, Documentation, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Zhichun; Moon, Jewoong – Educational Technology & Society, 2023
In this study, we have proposed and implemented a sequential data analytics (SDA)-driven methodological framework to design adaptivity for digital game-based learning (DGBL). The goal of this framework is to facilitate children's personalized learning experiences for K-5 computing education. Although DGBL experiences can be beneficial, young…
Descriptors: Learning Analytics, Design, Game Based Learning, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Amaya, Edna Johanna Chaparro; Restrepo-Calle, Felipe; Ramírez-Echeverry, Jhon J. – Journal of Information Technology Education: Research, 2023
Aim/Purpose: This article proposes a framework based on a sequential explanatory mixed-methods design in the learning analytics domain to enhance the models used to support the success of the learning process and the learner. The framework consists of three main phases: (1) quantitative data analysis; (2) qualitative data analysis; and (3)…
Descriptors: Learning Analytics, Guidelines, Student Attitudes, Learning Processes
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  17