NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers3
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Spier, Sarah K.; Dauer, Joseph T. – American Biology Teacher, 2023
There is an emphasis on survival-based selection in biology education that can allow students to neglect other important evolutionary components, such as sexual selection, reproduction, and inheritance. Student understanding of the role of reproduction in evolution is as important as student understanding of the role of survival. Limiting…
Descriptors: Biology, Science Education, Birth, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Haenel, Gregory – American Biology Teacher, 2023
Case studies are valuable tools for instruction but are often limited to a single topic and a single class period. Courses such as evolution that synthesize multiple concepts around a common theme, however, can use a single case study type project that extends over the entire semester to develop and link core concepts. A central theme in…
Descriptors: Science Instruction, Evolution, Biology, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Todd, Lindsay; Keim, Lisa; Broder, Dale – Science and Children, 2020
This article describes a self-guided, story-like game with creative drawing for grades 3-5 that teaches the evolution concepts of adaptation, natural selection, ecosystem dynamics, inheritance, and mutation following the "Next Generation Science Standards" ("NGSS"). Drawing reinforces concepts through emphasis on students'…
Descriptors: Elementary School Science, Science Instruction, Evolution, Teaching Methods
Sampson, Victor; Murphy, Ashley – NSTA Press, 2019
Are you interested in using argument-driven inquiry (ADI) for elementary instruction but just aren't sure how to do it? You aren't alone. "Argument-Driven Inquiry in Third-Grade Science" will provide you with both the information and instructional materials you need to start using this method right away. The book is a one-stop source of…
Descriptors: Persuasive Discourse, Grade 3, Elementary School Science, Elementary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ha, Minsu; Nehm, Ross H. – Science & Education, 2014
Although historical changes in scientific ideas sometimes display striking similarities with students' conceptual progressions, some scholars have cautioned that such similarities lack meaningful commonalities. In the history of evolution, while Darwin and his contemporaries often used natural selection to explain evolutionary trait gain or…
Descriptors: Genetics, Evolution, Scientific Concepts, Science History
Peer reviewed Peer reviewed
Direct linkDirect link
Russell, Terry; McGuigan, Linda – Primary Science, 2014
Even in the foundation stage (ages 3-5), children reveal an awareness of and enthusiasm for dinosaurs and fossils, so this research includes the entire primary age range. The authors sought to discover what ideas prevail as children develop and how their understanding progresses. Reviewing relevant educational research led them to define five…
Descriptors: Science Instruction, Evolution, Elementary School Science, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Gillham, Nicholas W. – Science & Education, 2015
Francis Galton, Charles Darwin's cousin, had wide and varied interests. They ranged from exploration and travel writing to fingerprinting and the weather. After reading Darwin's "On the Origin of Species," Galton reached the conclusion that it should be possible to improve the human stock through selective breeding, as was the…
Descriptors: Heredity, Genetics, Recognition (Achievement), Scientists
Peer reviewed Peer reviewed
Direct linkDirect link
Russell, Terry; McGuigan, Linda – Primary Science, 2014
As reported in an earlier article (Russell and McGuigan, 2014), with Nuffield Foundation support, the authors of this article have been exploring with a group of primary teachers the teaching and learning of evolution and inheritance, focusing on conceptual progression. The new National Curriculum for England requires learners to access knowledge…
Descriptors: Science Instruction, Elementary School Science, Measurement, Evolution
Peer reviewed Peer reviewed
Direct linkDirect link
Stansfield, William D. – American Biology Teacher, 2013
Before beginning a series of presentations on evolution, it would be prudent to survey the general level of students' understanding of prerequisite basic concepts of reproduction, heredity, ontology, and phenotypic diversity so that teachers can avoid devoting time to well-known subjects of general knowledge and can spend more time on subjects…
Descriptors: Heredity, Readiness, Evolution, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bybee, Rodger W. – Science and Children, 2013
Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…
Descriptors: Biological Sciences, Academic Standards, Elementary School Science, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Bybee, Rodger W. – Science Teacher, 2013
Using the life sciences, this article first reviews essential features of the "NRC Framework for K-12 Science Education" that provided a foundation for the new standards. Second, the article describes the important features of life science standards for elementary, middle, and high school levels. Special attention is paid to the teaching…
Descriptors: Biological Sciences, Biology, Science Education, Elementary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Bonner, J. Jose – Science Teacher, 2011
Students may wonder why they look the way they do. The answer lies in genetics, the branch of biology that deals with heredity and the variation of inherited traits. However, understanding how an organism's genetic code (i.e., genotype) affects its characteristics (i.e., phenotype) is more than a matter of idle curiosity: It's essential for…
Descriptors: Heredity, Genetics, Human Body, Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Kampourakis, Kostas; Zogza, Vasso – Science & Education, 2009
This study aimed to explore secondary students' explanations of evolutionary processes, and to determine how consistent these were, after a specific evolution instruction. In a previous study it was found that before instruction students provided different explanations for similar processes to tasks with different content. Hence, it seemed that…
Descriptors: Evolution, Concept Formation, Secondary School Students, Science Instruction
Peer reviewed Peer reviewed
Burgess, R. L.; Molenaar, P. C. M. – Human Development, 1993
Comments on an earlier paper by Lerner and von Eye on sociobiology and human development; general theory in science, especially evolutionary theory; adaptation and behavior plasticity; and modern behavior genetics. Examines assertion that "heritability says nothing about the extent to which a trait is commonly inherited." Discusses…
Descriptors: Adjustment (to Environment), Evolution, Heredity, Individual Development
Peer reviewed Peer reviewed
Cronquist, Arthur – Journal of College Science Teaching, 1979
Discusses some principles of biological taxonomy. The evolutionary principle in taxonomy and its limitations, and the difference in evolutionary patterns between plants and animals, are also discussed. (HM)
Descriptors: Biological Sciences, Classification, College Science, Evolution
Previous Page | Next Page ยป
Pages: 1  |  2