NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20250
Since 2022 (last 5 years)0
Since 2017 (last 10 years)4
Since 2007 (last 20 years)10
Audience
Teachers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Klingler, Severin; Wampfler, Rafael; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2017
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high volumes from intelligent tutoring systems and massive open online courses. In this paper, we…
Descriptors: Classification, Artificial Intelligence, Networks, Learning Disabilities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Ran; Stamper, John; Davenport, Jodi – Journal of Learning Analytics, 2018
Temporal analyses are critical to understanding learning processes, yet understudied in education research. Data from different sources are often collected at different grain sizes, which are difficult to integrate. Making sense of data at many levels of analysis, including the most detailed levels, is highly time-consuming. In this paper, we…
Descriptors: Intelligent Tutoring Systems, Learning, Data Analysis, Student Development
Selent, Douglas; Patikorn, Thanaporn; Heffernan, Neil – Grantee Submission, 2016
In this paper, we present a dataset consisting of data generated from 22 previously and currently running randomized controlled experiments inside the ASSISTments online learning platform. This dataset provides data mining opportunities for researchers to analyze ASSISTments data in a convenient format across multiple experiments at the same time.…
Descriptors: Intelligent Tutoring Systems, Data, Randomized Controlled Trials, Electronic Learning
Liu, Ran; Stamper, John; Davenport, Jodi – Grantee Submission, 2018
Temporal analyses are critical to understanding learning processes, yet understudied in education research. Data from different sources are often collected at different grain sizes, which are difficult to integrate. Making sense of data at many levels of analysis, including the most detailed levels, is highly time-consuming. In this paper, we…
Descriptors: Intelligent Tutoring Systems, Learning, Data Analysis, Student Development
Snow, Erica L. – International Educational Data Mining Society, 2015
Intelligent tutoring systems are adaptive learning environments designed to support individualized instruction. The adaptation embedded within these systems is often guided by user models that represent one or more aspects of students' domain knowledge, actions, or performance. The proposed project focuses on the development and testing of user…
Descriptors: Intelligent Tutoring Systems, Models, Individualized Instruction, Needs Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
West, Darrell M. – Brookings Institution, 2012
Twelve-year-old Susan took a course designed to improve her reading skills. She read short stories and the teacher would give her and her fellow students a written test every other week measuring vocabulary and reading comprehension. A few days later, Susan's instructor graded the paper and returned her exam. The test showed that she did well on…
Descriptors: Data Processing, Internet, Pattern Recognition, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Kommers, Piet, Ed.; Issa, Tomayess, Ed.; Issa, Theodora, Ed.; McKay, Elspeth, Ed.; Isias, Pedro, Ed. – International Association for Development of the Information Society, 2016
These proceedings contain the papers and posters of the International Conferences on Internet Technologies & Society (ITS 2016), Educational Technologies (ICEduTech 2016) and Sustainability, Technology and Education (STE 2016), which have been organised by the International Association for Development of the Information Society and…
Descriptors: Conferences (Gatherings), Foreign Countries, Internet, Educational Technology
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection