NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Filonova, Irina; Trotter, Justin H.; Banko, Jessica L.; Weeber, Edwin J. – Learning & Memory, 2014
Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal "UBE3A" gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular…
Descriptors: Genetic Disorders, Animals, Molecular Structure, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert – Learning & Memory, 2015
"Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…
Descriptors: Animals, Research, Cognitive Ability, Neurological Organization
Peer reviewed Peer reviewed
Direct linkDirect link
Darcq, Emmanuel; Koebel, Pascale; Del Boca, Carolina; Pannetier, Solange; Kirstetter, Anne-Sophie; Garnier, Jean-Marie; Hanauer, Andre; Befort, Katia; Kieffer, Brigitte L. – Learning & Memory, 2011
RSK2 is a Ser/Thr kinase acting in the Ras/MAPK pathway. "Rsk2" gene deficiency leads to the Coffin-Lowry Syndrome, notably characterized by cognitive deficits. We found that "mrsk2" knockout mice are unable to associate an aversive stimulus with context in a lithium-induced conditioned place aversion task requiring both high-order cognition and…
Descriptors: Brain, Cognitive Processes, Brain Hemisphere Functions, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Connor, Steven A.; Hoeffer, Charles A.; Klann, Eric; Nguyen, Peter V. – Learning & Memory, 2011
Silencing of a single gene, FMR1, is linked to a highly prevalent form of mental retardation, characterized by social and cognitive impairments, known as fragile X syndrome (FXS). The FMR1 gene encodes fragile X mental retardation protein (FMRP), which negatively regulates translation. Knockout of Fmr1 in mice results in enhanced long-term…
Descriptors: Animals, Mental Retardation, Depression (Psychology), Genetic Disorders