Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 8 |
Descriptor
| Academic Achievement | 8 |
| Data Analysis | 8 |
| Prediction | 6 |
| Intelligent Tutoring Systems | 3 |
| Models | 3 |
| Accuracy | 2 |
| Bayesian Statistics | 2 |
| Computer Science Education | 2 |
| Correlation | 2 |
| Data Collection | 2 |
| Grades (Scholastic) | 2 |
| More ▼ | |
Source
| Journal of Educational Data… | 8 |
Author
| Areti Manataki | 1 |
| Barnes, Tiffany | 1 |
| Behnam Rohani | 1 |
| Brandon Zhang | 1 |
| Brodersen, Kay H. | 1 |
| Buhmann, Joachim M. | 1 |
| Chi, Min | 1 |
| Chung, Gregory K. W. K. | 1 |
| Gervet, Theophile | 1 |
| Heinimann, Hans R. | 1 |
| Johri, Aditya | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 8 |
| Reports - Research | 8 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 3 |
| Elementary Education | 1 |
| Grade 6 | 1 |
| Grade 7 | 1 |
| Grade 8 | 1 |
| Intermediate Grades | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Secondary Education | 1 |
Audience
Location
| California | 1 |
| North Carolina | 1 |
| Switzerland | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Sweeney, Mack; Rangwala, Huzefa; Lester, Jaime; Johri, Aditya – Journal of Educational Data Mining, 2016
An enduring issue in higher education is student retention to successful graduation. National statistics indicate that most higher education institutions have four-year degree completion rates around 50%, or just half of their student populations. While there are prediction models which illuminate what factors assist with college student success,…
Descriptors: Systems Approach, Data Analysis, Prediction, Academic Achievement
Zimmermann, Judith; Brodersen, Kay H.; Heinimann, Hans R.; Buhmann, Joachim M. – Journal of Educational Data Mining, 2015
The graduate admissions process is crucial for controlling the quality of higher education, yet, rules-of-thumb and domain-specific experiences often dominate evidence-based approaches. The goal of the present study is to dissect the predictive power of undergraduate performance indicators and their aggregates. We analyze 81 variables in 171…
Descriptors: Undergraduate Students, Graduate Students, Academic Achievement, Prediction
Kerr, Deirdre; Chung, Gregory K. W. K. – Journal of Educational Data Mining, 2012
The assessment cycle of "evidence-centered design" (ECD) provides a framework for treating an educational video game or simulation as an assessment. One of the main steps in the assessment cycle of ECD is the identification of the key features of student performance. While this process is relatively simple for multiple choice tests, when…
Descriptors: Evidence Based Practice, Design, Academic Achievement, Educational Games
Saarela, Mirka; Karkkainen, Tommi – Journal of Educational Data Mining, 2015
Curricula for Computer Science (CS) degrees are characterized by the strong occupational orientation of the discipline. In the BSc degree structure, with clearly separate CS core studies, the learning skills for these and other required courses may vary a lot, which is shown in students' overall performance. To analyze this situation, we apply…
Descriptors: Data Analysis, Academic Achievement, Undergraduate Students, Core Curriculum

Peer reviewed
