NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yongseok Lee; Walter L. Leite; Audrey J. Leroux – Journal of Experimental Education, 2024
In the current study, we compare propensity score (PS) matching methods for data with a cross-classified structure, where each individual is clustered within more than one group, but the groups are not hierarchically organized. Through a Monte Carlo simulation study, we compared sequential cluster matching (SCM), preferential within cluster…
Descriptors: Comparative Analysis, Data Analysis, Groups, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Shero, Jeffrey A.; Al Otaiba, Stephanie; Schatschneider, Chris; Hart, Sara A. – Journal of Experimental Education, 2022
Many of the analytical models commonly used in educational research often aim to maximize explained variance and identify variable importance within models. These models are useful for understanding general ideas and trends, but give limited insight into the individuals within said models. Data envelopment analysis (DEA), is a method rooted in…
Descriptors: Data Analysis, Educational Research, Nonparametric Statistics, Efficiency
Peer reviewed Peer reviewed
Direct linkDirect link
Ting Dai; Yang Du; Jennifer Cromley; Tia Fechter; Frank Nelson – Journal of Experimental Education, 2024
Simple matrix sampling planned missing (SMS PD) design, introduce missing data patterns that lead to covariances between variables that are not jointly observed, and create difficulties for analyses other than mean and variance estimations. Based on prior research, we adopted a new multigroup confirmatory factor analysis (CFA) approach to handle…
Descriptors: Research Problems, Research Design, Data, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Glaman, Ryan; Chen, Qi; Henson, Robin K. – Journal of Experimental Education, 2022
This study compared three approaches for handling a fourth level of nesting when analyzing cluster-randomized trial (CRT) data. Although CRT data analyses may include repeated measures, individual, and cluster levels, there may be an additional fourth level that is typically ignored. This study examined the impact of ignoring this fourth level,…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Data Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kyle T. Turner; George Engelhard Jr. – Journal of Experimental Education, 2024
The purpose of this study is to demonstrate clustering methods within a functional data analysis (FDA) framework for identifying subgroups of individuals that may be exhibiting categories of misfit. Person response functions (PRFs) estimated within a FDA framework (FDA-PRFs) provide graphical displays that can aid in the identification of persons…
Descriptors: Data Analysis, Multivariate Analysis, Individual Characteristics, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Manolov, Rumen; Solanas, Antonio; Sierra, Vicenta – Journal of Experimental Education, 2020
Changing criterion designs (CCD) are single-case experimental designs that entail a step-by-step approximation of the final level desired for a target behavior. Following a recent review on the desirable methodological features of CCDs, the current text focuses on an analytical challenge: the definition of an objective rule for assessing the…
Descriptors: Research Design, Research Methodology, Data Analysis, Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Golnaz Arastoopour Irgens; Danielle Herro; Ashton Fisher; Ibrahim Adisa; Oluwadara Abimbade – Journal of Experimental Education, 2024
The importance of data literacies and the shortage of research surrounding data science in elementary schools motivated this research-practice partnership (RPP) between researchers and teachers from a STEM elementary school. We used a narrative case study methodology to describe the instructional practices of one music teacher who co-designed a…
Descriptors: Elementary School Teachers, Grade 5, Music Teachers, Music Education
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhonghua – Journal of Experimental Education, 2022
Reporting standard errors of equating has been advocated as a standard practice when conducting test equating. The two most widely applied procedures for standard errors of equating including the bootstrap method and the delta method are either computationally intensive or confined to the derivations of complicated formulas. In the current study,…
Descriptors: Error of Measurement, Item Response Theory, True Scores, Equated Scores
Peer reviewed Peer reviewed
Direct linkDirect link
A. Corinne Huggins-Manley; Jing Huang; Jerri-ann Danso; Wei Li; Walter L. Leite – Journal of Experimental Education, 2024
The global COVID-19 health pandemic caused major interruptions to educational assessment systems, partially due to shifts to remote learning environments, entering the post-COVID educational world into one that is more open to heterogeneity in instructional and assessment modes for secondary students. In addition, in 2020, educational inequities…
Descriptors: Student Evaluation, Educational Environment, Educational Change, COVID-19
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, Avi; Garner, Joanna K. – Journal of Experimental Education, 2020
In this commentary, we propose a framework for applying the Complex Dynamical Systems (CDS) approach in educational research. Drawing on the conceptual articles in the special issue for ontological, theoretical, and methodological principles, and on the empirical articles for examples of these principles' application, we suggest six interdependent…
Descriptors: Educational Research, Systems Approach, Theories, Goal Orientation
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-Hwane; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2019
Multilevel modeling has been utilized for combining single-case experimental design (SCED) data assuming simple level-1 error structures. The purpose of this study is to compare various multilevel analysis approaches for handling potential complexity in the level-1 error structure within SCED data, including approaches assuming simple and complex…
Descriptors: Hierarchical Linear Modeling, Synthesis, Data Analysis, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Journal of Experimental Education, 2018
Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…
Descriptors: Measures (Individuals), Nonparametric Statistics, Item Response Theory, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Young Ri; Hong, Sehee – Journal of Experimental Education, 2019
The present study examines bias in parameter estimates and standard error in cross-classified random effect modeling (CCREM) caused by omitting the random interaction effects of the cross-classified factors, focusing on the effect of a sample size within cells and ratio of a small cell. A Monte Carlo simulation study was conducted to compare the…
Descriptors: Interaction, Models, Sample Size, Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1  |  2