Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 23 |
| Since 2017 (last 10 years) | 63 |
| Since 2007 (last 20 years) | 132 |
Descriptor
Source
Author
| Aleven, Vincent | 4 |
| Baker, Ryan S. | 4 |
| Barnes, Tiffany | 4 |
| Pardos, Zachary A. | 4 |
| Brunskill, Emma | 3 |
| Cason, Carolyn L. | 3 |
| Chi, Min | 3 |
| Heffernan, Neil | 3 |
| Koedinger, Kenneth R. | 3 |
| Lawton, Stephen B. | 3 |
| Luke G. Eglington | 3 |
| More ▼ | |
Publication Type
Education Level
Location
| Australia | 6 |
| Massachusetts | 6 |
| Pennsylvania | 6 |
| Canada | 5 |
| New York | 5 |
| Netherlands | 4 |
| California | 3 |
| Florida | 3 |
| North Carolina | 3 |
| Texas | 3 |
| California (Stanford) | 2 |
| More ▼ | |
Laws, Policies, & Programs
| Elementary and Secondary… | 6 |
| Education Amendments 1974 | 1 |
| Education Consolidation… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Philip I. Pavlik Jr.; Luke G. Eglington – International Educational Data Mining Society, 2025
In educational systems, predictive models face significant challenges during initial deployment and when new students begin to use them or when new exercises are added to the system due to a lack of data for making initial inferences, often called the cold start problem. This paper tests logitdec and logitdecevol, "evolutionary" features…
Descriptors: Artificial Intelligence, Models, Prediction, Accuracy
Ting Cai; Qingyuan Tang; Yu Xiong; Lu Zhang – International Educational Data Mining Society, 2025
Teacher classroom teaching behavior indicators serve as a crucial foundation for guiding instructional evaluation. Existing indicator system suffers from limitations such as strong subjectivity and weak contextual generalization capabilities. Generalized category discovery (GCD) enables automatic data clustering to identify known categories and…
Descriptors: Teacher Behavior, Teaching Methods, Models, Accuracy
Wan-Chong Choi; Chan-Tong Lam; António José Mendes – International Educational Data Mining Society, 2025
Missing data presents a significant challenge in Educational Data Mining (EDM). Imputation techniques aim to reconstruct missing data while preserving critical information in datasets for more accurate analysis. Although imputation techniques have gained attention in various fields in recent years, their use for addressing missing data in…
Descriptors: Research Problems, Data Analysis, Research Methodology, Models
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Bulathwela, Sahan; Verma, Meghana; Pérez-Ortiz, María; Yilmaz, Emine; Shawe-Taylor, John – International Educational Data Mining Society, 2022
This work explores how population-based engagement prediction can address cold-start at scale in large learning resource collections. The paper introduces: (1) VLE, a novel dataset that consists of content and video based features extracted from publicly available scientific video lectures coupled with implicit and explicit signals related to…
Descriptors: Video Technology, Lecture Method, Data Analysis, Prediction
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Prihar, Ethan; Vanacore, Kirk; Sales, Adam; Heffernan, Neil – International Educational Data Mining Society, 2023
There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized experiments that evaluate problem-level interventions in…
Descriptors: Electronic Learning, Intervention, Instructional Effectiveness, Data Collection
Juliette Woodrow; Sanmi Koyejo; Chris Piech – International Educational Data Mining Society, 2025
High-quality feedback requires understanding of a student's work, insights into what concepts would help them improve, and language that matches the preferences of the specific teaching team. While Large Language Models (LLMs) can generate coherent feedback, adapting these responses to align with specific teacher preferences remains an open…
Descriptors: Feedback (Response), Artificial Intelligence, Teacher Attitudes, Preferences
Seyed Parsa Neshaei; Richard Lee Davis; Paola Mejia-Domenzain; Tanya Nazaretsky; Tanja Käser – International Educational Data Mining Society, 2025
Deep learning models for text classification have been increasingly used in intelligent tutoring systems and educational writing assistants. However, the scarcity of data in many educational settings, as well as certain imbalances in counts among the annotated labels of educational datasets, limits the generalizability and expressiveness of…
Descriptors: Artificial Intelligence, Classification, Natural Language Processing, Technology Uses in Education
Napol Rachatasumrit; Paulo F. Carvalho; Kenneth R. Koedinger – International Educational Data Mining Society, 2024
What does it mean for a model to be a better model? One conceptualization, indeed a common one in Educational Data Mining, is that a better model is the one that fits the data better, that is, higher prediction accuracy. However, oftentimes, models that maximize prediction accuracy do not provide meaningful parameter estimates, making them less…
Descriptors: Data Analysis, Models, Prediction, Accuracy
Golnaz Arastoopour Irgens; Ibrahim Oluwajoba Adisa; Deepika Sistla; Tolulope Famaye; Cinamon Bailey; Atefeh Behboudi; Adenike Omalara Adefisayo – International Educational Data Mining Society, 2024
Although the fields of educational data mining and learning analytics have grown significantly in terms of analytical sophistication and the breadth of applications, the impact on theory-building has been limited. To move these fields forward, studies should not only be driven by learning theories, but should also use analytics to in form and…
Descriptors: Learning Theories, Learning Analytics, Electronic Learning, Elementary School Students
Jade Mai Cock; Hugues Saltini; Haoyu Sheng; Riya Ranjan; Richard Davis; Tanja Käser – International Educational Data Mining Society, 2024
Predictive models play a pivotal role in education by aiding learning, teaching, and assessment processes. However, they have the potential to perpetuate educational inequalities through algorithmic biases. This paper investigates how behavioral differences across demographic groups of different sizes propagate through the student success modeling…
Descriptors: Demography, Statistical Bias, Algorithms, Behavior
Tsubasa Minematsu; Atsushi Shimada – International Association for Development of the Information Society, 2024
In using large language models (LLMs) for education, such as distractors in multiple-choice questions and learning by teaching, error-containing content is used. Prompt tuning and retraining LLMs are possible ways of having LLMs generate error-containing sentences in the learning content. However, there needs to be more discussion on how to tune…
Descriptors: Educational Technology, Technology Uses in Education, Error Patterns, Sentences
Jordan Grant; Alex J. Bowers – AERA Online Paper Repository, 2024
This case study examines the critical role school leaders play in teacher data use. Aligned with previous literature, we find that educators perceive high levels of support for data use and prefer formative data; however, observations showed a data use method unlike previously described inquiry cycles. From these findings we propose a new data use…
Descriptors: Leadership Role, Instructional Leadership, Data Use, Preferences
Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
The gold-standard for evaluating the effect of an educational intervention on student outcomes is running a randomized controlled trial (RCT). However, RCTs may often be small due to logistical considerations, and resulting treatment effect estimates may lack precision. Recent methods improve experimental precision by incorporating information…
Descriptors: Intervention, Outcomes of Education, Randomized Controlled Trials, Data Use

Peer reviewed
Direct link
