NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang Shi; Robin Schmucker; Keith Tran; John Bacher; Kenneth Koedinger; Thomas Price; Min Chi; Tiffany Barnes – Journal of Educational Data Mining, 2024
Understanding students' learning of knowledge components (KCs) is an important educational data mining task and enables many educational applications. However, in the domain of computing education, where program exercises require students to practice many KCs simultaneously, it is a challenge to attribute their errors to specific KCs and,…
Descriptors: Programming Languages, Undergraduate Students, Learning Processes, Teaching Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
John Stamper; Steven Moore; Carolyn P. Rosé; Philip I. Pavlik Jr.; Kenneth Koedinger – Journal of Educational Data Mining, 2024
LearnSphere is a web-based data infrastructure designed to transform scientific discovery and innovation in education. It supports learning researchers in addressing a broad range of issues including cognitive, social, and motivational factors in learning, educational content analysis, and educational technology innovation. LearnSphere integrates…
Descriptors: Learning Analytics, Web Sites, Data Use, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sales, Adam C.; Prihar, Ethan B.; Gagnon-Bartsch, Johann A.; Heffernan, Neil T. – Journal of Educational Data Mining, 2023
Randomized A/B tests within online learning platforms represent an exciting direction in learning sciences. With minimal assumptions, they allow causal effect estimation without confounding bias and exact statistical inference even in small samples. However, often experimental samples and/or treatment effects are small, A/B tests are underpowered,…
Descriptors: Data Use, Research Methodology, Randomized Controlled Trials, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Edwards, John; Hart, Kaden; Shrestha, Raj – Journal of Educational Data Mining, 2023
Analysis of programming process data has become popular in computing education research and educational data mining in the last decade. This type of data is quantitative, often of high temporal resolution, and it can be collected non-intrusively while the student is in a natural setting. Many levels of granularity can be obtained, such as…
Descriptors: Data Analysis, Computer Science Education, Learning Analytics, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Baker, Ryan S.; Esbenshade, Lief; Vitale, Jonathan; Karumbaiah, Shamya – Journal of Educational Data Mining, 2023
Predictive analytics methods in education are seeing widespread use and are producing increasingly accurate predictions of students' outcomes. With the increased use of predictive analytics comes increasing concern about fairness for specific subgroups of the population. One approach that has been proposed to increase fairness is using demographic…
Descriptors: Demography, Data Use, Prediction, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jeffrey Matayoshi; Shamya Karumbaiah – Journal of Educational Data Mining, 2024
Various areas of educational research are interested in the transitions between different states--or events--in sequential data, with the goal of understanding the significance of these transitions; one notable example is affect dynamics, which aims to identify important transitions between affective states. Unfortunately, several works have…
Descriptors: Models, Statistical Bias, Data Analysis, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Seiyon M. Lee; Sami Baral; Hongming Chip Li; Li Cheng; Shan Zhang; Carly S. Thorp; Jennifer St. John; Tamisha Thompson; Neil Heffernan; Anthony F. Botelho – Journal of Educational Data Mining, 2025
Teachers often use open-ended questions to promote students' deeper understanding of the content. These questions are particularly useful in K-12 mathematics education, as they provide richer insights into students' problem-solving processes compared to closed-ended questions. However, they are also challenging to implement in educational…
Descriptors: Feedback (Response), Taxonomy, Data Analysis, Middle School Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Frank Stinar; Zihan Xiong; Nigel Bosch – Journal of Educational Data Mining, 2024
Educational data mining has allowed for large improvements in educational outcomes and understanding of educational processes. However, there remains a constant tension between educational data mining advances and protecting student privacy while using educational datasets. Publicly available datasets have facilitated numerous research projects…
Descriptors: Foreign Countries, College Students, Secondary School Students, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Md Akib Zabed Khan; Agoritsa Polyzou – Journal of Educational Data Mining, 2024
In higher education, academic advising is crucial to students' decision-making. Data-driven models can benefit students in making informed decisions by providing insightful recommendations for completing their degrees. To suggest courses for the upcoming semester, various course recommendation models have been proposed in the literature using…
Descriptors: Academic Advising, Courses, Data Use, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matsuda, Noboru; Wood, Jesse; Shrivastava, Raj; Shimmei, Machi; Bier, Norman – Journal of Educational Data Mining, 2022
A model that maps the requisite skills, or knowledge components, to the contents of an online course is necessary to implement many adaptive learning technologies. However, developing a skill model and tagging courseware contents with individual skills can be expensive and error prone. We propose a technology to automatically identify latent…
Descriptors: Skills, Models, Identification, Courseware
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kerstin Wagner; Agathe Merceron; Petra Sauer; Niels Pinkwart – Journal of Educational Data Mining, 2024
In this paper, we present an extended evaluation of a course recommender system designed to support students who struggle in the first semesters of their studies and are at risk of dropping out. The system, which was developed in earlier work using a student-centered design, is based on the explainable k-nearest neighbor algorithm and recommends a…
Descriptors: At Risk Students, Algorithms, Foreign Countries, Course Selection (Students)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jacob Whitehill; Jennifer LoCasale-Crouch – Journal of Educational Data Mining, 2024
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate "Instructional Support" domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning…
Descriptors: Artificial Intelligence, Teacher Evaluation, Models, Transcripts (Written Records)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Previous Page | Next Page »
Pages: 1  |  2